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CHAPTER I

INTRODUCT ION

1.1 Background

Whenever the propagation ot a sound wave is obstructed by some

obstacle , par t  of the sound wave is deflected or disturbed . Th is

disturbance or interference gives rise to the phenomenon called

diffraction.

The problem of d i f f r a c t i o n , whe re the in te r fe r ing  obstacle is

a semi—infinite half—p lane, is a classical problem in the area of

wave propagation . Recently, because of environmental concerns ,

there has been interest In using barriers and enclosures as a means

of isolating noise from adjacent areas. Understanding the phenomenon

of diffraction is important , since the sound waves will diffract

around the barrier. Although , the geometry of the half—p lane plays

a dominant role in creating the diffracted pressure , the nature of

the surface impedance also influences the behavior of the diffracted

pressure. By adjusting the surface impedance of the half—p lane,

the diffracted pressure could be modified in some desirable fashion.

1.2 Review of Previous Investigations

Studies of diffraction have been extensively carried out in

the fields of acoustics and optics. Many related publications may

be easily found in the literature. This review is concerned specif-

ically with those papers that are related to the diffraction of a

wave by a half—p lane and , in particular , an impedance covered half—

p1ane~

I ______________ — - - — .. - _-~~~~~-— -~~~~~ ..—.—— — ..—.— - .- -~~ .—.—-—__ — . _ — — —  — •~~~~
— — 

_.—•——. . -. — . - — — —  
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2

Because ot t h e geometry of the half—plane , the usual techniques

for solving boundary value problems do not apply. Consequently, In

order to solve the problem for sharp geometrie s like the half-p lane ,

other methods have had to be formulated. it was Sommerfeld [1 ,2) vho

successfully used an integral expression to represent the scattered

pressure. With the pressure expressed in an integral form and a

concept of sources and image sources , he matched the conditions on

the surfaces of the half—p lane. in Sommerfeld’s classical work , he

was able to solve the problem only for the rather ideal boundary

conditions of a perfectly soft (pressure release) or a perfectl y

hard (rigid) surface. Any impedance between those extremes could

not be accommodated by his more or less heuristic formulation of the

problem. Sommerfeld ’s solution accounts for the geometry of the

diffracting obstacle but is limited in the sense that it does not

account for arbitrary surface conditions .

After Sommerfeld , several researchers found a number of ways

to solve the problem of diffraction by a half—plane based on the so—

called Weiner—Hopf Technique. The Weiner—Hopf method is essentially

an extension of Fourier—Laplace transforms which results in a complex

variable equation that is analytic within a certain region. The

fundamental step in the Weiner—Hopf method is to determine two

functions , each of which satisfy a complex variable equation in

different halves of the complex plane but together satisfy the

equation in a proper overlapp ing region- The problem can b~ reduced

to the task of splitting a complex function into two factors in such

a way that each factor contains specific singularities . A variation

- —. -p.-- — - - — —..—-—— _— _— .-—-— — —- —. .- .-— -——.————.
~~~~~~ ,-- — - — . — — ~~—~~1~ 
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of the Welner.-Hopt method is a dual integral technique employed by

Jones [3) and Clemmow [4]. in th is  method , two integral equations

are  found tha t  a re valid in separate h a l f — p lanes of the conplex

plane. it is necessary to f ind a function that will satisfy each

integral equation in its respective half—space. Jones and Clenmiow

app lied the dual integral method to the specific problem of diffrac-

tion by a half—p lane and found a solution exactly equivalent to

Sommerfeld ’s solution . Again , they only considered ideal boundary

conditions.

The Weiner—Hop f technique was successfully employed by Senior

[.5). He attempts a problem in which a semi—infinite metallic sheet

has some finite conductivity. The solution that he finds is exact

but the function resulting from the Weiner—Hopf analysis is in

integral form and cannot be easily computed .

Following Senior , Williams (6] extended the Weiner—Hopf technique

to a more general problem of the diffraction by a wedge. He reduced

the problem to the solution of an ordinary difference equation. This

difference equation was then solved by means of a double Gamma

function defined by Barnes (7]. If the wedge angle was of the fotm

p 7T/q, where p and q are prime , and p is odd , a closed form solution

could then be found . By choosing proper values of p and q, a wedge

that is very close to a half—plane could be approximated . R.awlins

[8] used the Weiner—Hopf technique to solve the diffraction by a

half—p lane with one side soft and the other side rigid . According

to R.awlins, a “perfectly absorbing” surface can be modeled by adding

the hard and soft surface solutions together and dividing by two

— —--~~~
- - . —‘- . ---~~ -.- . — -. - - -- -—--— — —.—~- -— . — -- 
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4

From this he concludes that the absorbing surface will attenuate the

diffracted pressure if it is on the illuminated surface.

The case of a half—p lane with an arbitrary surface impedance

has not been solved by the Weiner—Hop f technique. However , the

Russian physicist , Malyuzhinets [9,10,11] has approached the problem

by yet another method. Malyuzhinets used a Fourier Transform

approach to find a single spectral function for the whole range of

integration. The function is found to be a product of four Integral

functions that comprise the special functions derived by Malyuzhinets

to account for the arbitrary surface impedance. Malyuzhinets

demonstrates that each spectral function is a solution of a differ-

ence equation. Malyuzhinets and his colleagues have also applied

their technique to a more general class of problem where the dif-

fracting obstacle is an impedance covered wedge.

In most cases , the diffraction problem was solved considering

an incident plane wave. Redf earn [12] considers various kinds of

sources. Specifically, for a point source Redfearn discussed the

practical uses of a half plane as a noise barrier- Finally, Clemmow

(4] discusses the diffraction of a line source by a half—plane ,

where he derived the solution in terms of the Fresnel Integrals- A

good summary of the work accomplished in the area of diffraction by

edges and wedges is given by Pierce (13].

-

~
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CHAPTER II

M.\~ h. ~-L\~ I C A L  FORMU LA TIoN FOR THE DiFFRACTION OF
~ ! I C WAVES BY AN IMPEDANCE COVERED HALF—PLAN E

~.l S t a t t - ~ ent ot the  P rob lem

I n n i i s  s tud y ,  t he  problem of d i f f r a c t i o n , whe re the d is turb ing

ob s t a c l e  is a h a l f — p la ne , is co nsidered . The acoust ic  impedance of

the  upper and lower s u r f a c e s  of the ha l f—plane  wi l l  have an e f f e c t

on th~ d i f f r a c t i o n  of a sound wave . Conve nt ional ly ,  this p roblem

is app roached b y conside r ing  onl y the ideal su r face  conditions of a

pe r f e c t l y  r igid or a p e r f e c t l y  so f t  ha l f—p lane. In t h i s  study ,

however , the  e f f e c t  of more real is t ic  surface conditions are con-

s idered.  These su r face  co ndi t ions  can account for  an a r b i t r a r y

local reac t ance and an a r b i t r a r y  absorption on both surfaces  of the

h a l f — p lane. Speci f ic a l ly ,  this study aims to determine exact ly how

the su r f a c e  impedances on the two sides of a ha l f—plane  will  a f f e c t

the  d i f f r a c t i o n of sound .

In addition to th is , var io us kinds of acoustic sources can

prod uce the sound waves incident upon the ha l f—plane . Subsequent ly ,

th i s  st r  -/ also invest i gates the d i f f rac t ion  for  a plane wave , a

li ne sour ce , ~nd a point source.

O f t e n when dealing w i t h  the d i f f r a c t i o n  of a sound wave ,

interest concentrates only on how the diffracted field appears when

an observer is located many wave lengths from the d i f f r a c t i n g

obstacle Howeve r , it is a goal of this  study to also investigate

the d i f f r ac t ion  when the observer distance from the edge may not

_-_—-—--pw_- — 
~
—-— - -. . - .. -.—- ———-—-. — — ~~~~~~~~~~~~ -p.—.——— — —. .
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necessar i ly  be great , as well  as when the obse rver d is tance  does

become la rge .

A special case of d i f f r a i i ion r e s u l t s  when the  source and

observer  a re  located at the same pos i t i on .  This is called back—

s c a t t e r i n g .  Resul t s  of b a c k s c a t t e r i n g  fo r  various surface and source

c o nd f t i o n s  are also to be analyzed.

In shor t , the goals of this study are to develop analytical

models and exact solutions that account for arbitrary realistic

s u r f a c e  condi t ions , source and observer  locations , fo r  the a c o u s t i c

d i l ir a c t i o n  and backscat te r ing  by a h a l f — p lane.

2 - 2  Assumpt ions

The problem that  is modeled here is based upon the  existence

of a s e m i — i n f i n i t e  th in  plane. Needless to say, one cannot r ea l i ze

such an ed ge physical ly .

Perhaps  of more s i g n i f i c a n c e  are the assumptions and r e s t r i — -

tions that are made concerning the acoustical behavior of the

seml—infi r.ite plane surfaces. For several reasons, the surfaces

are considered to have locally reacting impedances. This is chosen

in the first place because it represents many real accustic situat ions

reasonably well. Secondly, it can be handled mathematically by a

comparatively simple formulation.

What then is meant by a locally reacting surface? Suppose an

acoustic wave impinges on a surface. Some of the energy of the

acoustic wave could be reflected , some could be absorbed , and some

could be used to set the surface itself into motion . it the surface

— —~.- — • — ~~~~
~_



7

it s e l f  is set in to  motion , it is possible , depending on the m a t e r i a l

naking up the  surface , for t ha t  mot ion  to propagate along the su r f a ce

For a locally r eac t ing  s u r f a c e , th i s  is not possible.

I t  may be possible fo r  the sur face  to be set into no t ion  b y an

incident  acoust ic  wave in such a way tha t  each point  on the  su r f ace

moves independent ly  of all adjacent points. In o the r  words , t h e r e

is no coup ling of the  motion of the neighbor ing p o i n t s  of the surface ,

so consequently , no allowances are made f o r  the  propagat ion  of a

wave along or t h r o u g h the  s u r f a c e .  It is impor tan t  to recognize

t h a t  th is  means the re  are no elastic waves propagating in the surface

nor are there  any waves t r a n s m i t t i n g  th rough  the s u r f a c e.  However ,

su r face  waves in the  acoustic medium are  accounted fo r  in th is

analysis .

The motion of the surface at a given point is determined by the

pressure of the acoustic wave at that point. It turns out that the

pressure is proportional to the component of velocity normal to the

surface. The motion of the acoustic fluid tangent to the surface

will not cause any motion in the surface. This is the true provided

the acoustic fluid is considered invisid or at least has negligible

viscosity. Thus, the ratio of the acoustic pressure at the surface

to the outward normal component of the velocity at the surface at

a given point is called the acoustic impedance of the surface at

that point . It is usually signified by Z - The half—plane is

considered to have different impedances on its two surfaces which

will be denoted by and Z , respectively.

— -~r -~~- - —~ - — -~~—- -  - -~~~~~ — - - -. ~~~~— . ,  -- —~~~~
-

____ -J
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In general , the  acous t i c  impedance of the sur face  may be complex -

The imaginary pa r t  of the  impedance corresponds to the reactive

component of the surface impedance. This means that the surface can

be locally idealized as consisting of a series of isolated masses

and springs . The real part of the impedance physically represents

the acoustic energy that is absorbed by the surface.

in brief , the assumptions imposed to facilitate the mathematical

formulation are (i) a thin half—plane , and (Ii) locally reacting

impedances on the surfaces.

2.3 Inte&ral Representation

In order to have an exact solution to a diffraction problem , it

is necessary to satisfy three basic requirements. First , the solu-

tion must satisfy the wave equation. Second, the solution must

account for the boundary conditions on the surfaces of the diffracting

half—plane and be continuous throughout the physical space. Third ,

the solution must correspond to the given type of excitation , be it

a plane wave , a line source , or a point source. If all these require-

ments are met, then the resulting solution must be unique to the

problem as it is posed . In this regard , the analytical method used

in this study exploits an integral representation that must satisfy

these requirements .

Since the Fourier Integral transforms are useful in the formu-

lation of the problem , they are introduced here. Define the Fourier

Transform pair as

- 
-
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f(x) - F ( y ) e ~~~~~
1X  dy (2.1)

and

F (y )  - 

f 

f(x)e~~~ dx - (2.2)

Consider now the wave equation for the pressure

— 
~~~ 

, (2 .3 )

where c is the velocity of propagation of an acoustic wave in free

space. Assuming the pressure to be periodic in time as e~~~
t , then

Equation ( 2 . 3 )  becomes

V 2p + k 2p — 0 , ( 2 . 4 )

where k — w/ c .

App lying Fourier Transforms on Equation (2.4), one obtains

dy
2 + (k 2 

- y 2 ) - (2.5)

or

(2 6)
dy

_ _ __ _ __ _ _ _  _ _  _ _  ~~~~ J
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where

/~~ 2

k

The solution to the differential equation in Equation (2.6) is

p - A ( y) e ~~~~~ - (2. 7)

The (+) or (—) sign in the exponent corresponds to the two possible

independent solutions of Equation (2 .6 ) .  To choose the proper sign ,

co nsider the p hy sical s i tua t ion . The pressure p is meant to

represent the d i f f r a c t i o n  from the edge . Consequently, the solution

must  re f lec t  the behavior of outgoing waves from the edge ra ther

than an incoming wave f rom i n f i n i t y .  The requirement for  ou tgoing

waves can be assured by us ing the plus sign (+) ~.or y<O , and the

minus sign (—) for  y > O .

Taki ng the inverse transform of p gives the following integral

representation ,

p(x,y) - 

~~~~ 
~~(y) e~~~~ e iYx dy (2.8)

Since the integral representation in Equation (2.8)  sat i s fies

t he wave equation , p ( x ,y) is th en chosen as a suitable representation

for  the scat te red pressure. Lett ing A — y/k then Equation (2.8)

becomes

* -~~~~- . - -- 
-— -~~~ 

- -. - —_—-
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p(x,y) - A (A)e Y~~~~~~ ~~~~~ d~. (2.9)

Anothe r way to consider this integral  representat ion is throug h

a more heuristic explanation of the physical meaning . The exponent

of the integrand can be regarded as waves propagating in all direc-

tions in the x,y plane. This part will satisfy the wave equatIrn.

The fu nction A ( A )  of the integrand can be regarded as a spectrum

f unction. This is to say that A ( A )  represents a weig h t i n g  or

dist r ibut ion of waves that will propagate in any given direction .

From this explanation , it is argued that , since the integral i~~~-if

is made up of a superposition of waves that ind iv idua l ly  sa ti s f y

the wave eq uation , then , this superposition of waves in the to rm u t

the integral will also satisfy the wave equation. Subsequently, the

integral in Equation (2.9) is often referred to as a spectrum o~

p lane waves .

A final step at arriving at an appropriate integral representa-

tion is to express the integral o±~ Equation (2.9) in polar

coordinates . This is accomp lished by adopting two t r ans fo rma t ions .

First, let

x — r cos~ ,

and

y — r s i n ~~ (2 10)

— ~~~~~~~ ~~~~~~~~~ . - 
~~~~~~~~. e_-~~ - . - — -~~~~

-- -~
- - - . -— — ~~~~ —. — - - .. —. —— — - - - . — —.  . — -



12

Next use the following change ot  v a r i a b l e  t o~ ~:

— c o s . t  . (2-11)

Thus , the corresponding path of integration in the i—p lane .i~st

be computed .

Making use of Equatio ns (2.10) and (2.11) , the i n t eg ra l

exp ression may be expressed in polar coordinates as fo l lows :

p (r ,~~) — 
kf 

A (cos~ ) sina e
_ r (

~
0
~~ 

cos t ± sin: s i a L ) dJ
y (2 12)

with (+) for the upper half—plane when y>O , and (-. ) f o r  the lower

h a l f — p lane when y<O , and where y is the path of integration. Letting

P(cosa) — k A(cosa) sincz and using the appropriate identity in the

exponent , one arrives at the following integral representation:

p (r ,~ ) — f P(cos~ ) ~~~~~ 
cos(~;~~) d-~ (2.13 )

J 
(—) upper half—p lane
(+) lower half—p lane

In this form , it is easier to recognize that Equation (2.13)

represents an angular dis tribution of plane waves.

It is necessary to carefully investigate what occurs under the

change of variables chosen in Equation (2.11). Starting with the

equation for A:

A — cos(cz + i c~~)



13

and

+ i A
1 

— coscz cos)~~1 
— i s in h i

1 P ifl~
t r (2.1.)

where ~ and i are the real par t s  of ~ and t and k and cz a r -  t h er r i I

imaginary pa r t s  of A and t .  Equat ing  the real and imaginary parts ,

it fol low s that

A — cos ..~~s h t , (2.15 )
r r 1

and

A — — sinh~~. sinu ( 2 . 16)1 1 r

Due to the pe r iod ic i ty  of COSCt and Sifl.t , the ent i re  complex

A—p lane wil l  map into a s t r i p of width it in the ct—plane , and then

repeat i tself  in subsequent s t r ips  of wid th  equal to ~~~.

To unders tand this , conside r A 1 negative , or the lower half  of

the comp lex A—p lane , the n — sinhcz~ sinczr must be negative. This is

met

1) for~~z < O a n d s i n a < 0i r

if ( 2 n — i ) r  < .~~ < 2riir

and

2) for c & > O a n d sinu’OI

if 2rtii < c t <  (2ri+l)iT ( 2 . 1 7 )

_ _ _ _ _ _ _  __ —- .- — — - ,—~~~~~~~
----- - - •  - -..— — - - -- 

- -- -

- -~~~~~ -_ _ _ _ _ _ _ _ _ _  -~~~~~~~~~~~~~~~~~ —- -~~~~~~~~~ - -- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -
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if , on the other  hand , A~ is positive and thus represents the upper

half of the complex A—p lane , then — sinhu 1 sinir must also be

positive Consequently, this condition is also satisfied :

1) fo r 0 and S int ‘ 0

if 2~~’- ~~< (2~-s-l )it

and

2)  f o r  > 0 and sinct < 0I r

if (2~
.—l) < ~ < 2n- . (2 lB)

-

Using the ccndlt io ns stated in Equations (2 . 1?)  and (2 . 18) ,

Figure 2 1  shows the mapp ing of the ent i re  complex A—plane to a

m ult i p l i L i t y  of strips in the complex u—plane .

Because the A—p lane maps Itsell every iT in the u—plane, it then

follows that ‘he path of integration from — ~ to + ~ in the ~-p lane

must likewise exhibi t  the same repeti t ive behavior .  Considering the

expression for  the real part  of A in the Equation (2.15) to determine

the path for A from — to + ~~~ , certain values for u and must be

chosen- Starting at — 
~ and moving to + in the A—plane the

corresponding values for 
~ 

and cz~ are indicated in Table 2.1- From

Table 2.1, it follows that the path of integration in the ct-plane

can be made by picking any combination of values of and

- .* — — - -- —-—-—-- --.-. p— —- — .—
~ 

. .— -—— - .~~
-.-.— - - - . — —.—- 

~~~ b.- . — - —. .
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COMPLEX X-PLANE

UPPER HALF PLANE

LOWER HALF PLANE ~

COMPLEX a- PLANE

-7r 0 2-ir
- ~~~~~~~~~—

( Figure 2.1. MappIng of the comp lex A—plane to the comple.’- ct—plane.
The shaded regions correspond to the lower half—plane
of the A—plane.

— __________________ . 
• ~~- —~
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I
Table 2.1 .  The path of integrat ion in the X—p lane and the

Co rresponding u— p lane .

A —
~~~ 

-‘ —1 -, 0 -
~~ 1 -,

0 0 0

ci (n+l )ri (n+l)ii it nil

The re is one last detail to consider before  actually def in ing

the y—pa t h .  There is a negative sign introduced in the integral by

the change of variable in Equation (2. 11) . To compensate for  tha t

minus sign , the path is simply followed in the opposite direction.

Taki ng this fac t  into account , and the values of ci and f r om

Table 2 .1 , the possible paths that may define the y—path in the

ct—plane are shown in Figure 2.2. Any path that joins A — + 0~ to

A — — is an acceptable y—path for  the integral representation of

Equat icn ( 2 - 1 3) -  It is now evident that there is also a multip l i c i ty

of y—patha .

Although all the y—paths described in the previous section do

indeed represent a path from — ~ to + ~~~~, not all paths are suitable

choices . The reason lies in the behavior of the exponent in the

integrand of Equation (2 13). One requirement for this integral to

exist is that it mur k. converge. Since the integration is in the

- p.- - -
~~~

- - - -. — .— —
~~~~~~ --- ~~

-
~~~~

- - . . -. ---- -- -. -
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r

-27r --ir 0 
_ _ _ _ _ _  

2-ir
-4 ~~~

- -4

-~~~~~~~~~~~~~~~

FIgure 2.2. The y—path s. Any path that connects the points A = —
~~~

to A — +~ in the direction of the arrows is a poss ible
y— path.

( 

— ~~ . -~~~~ —~~~~~~~~~~- — ~~~~~~~~~~~~~~~~~~~~~~
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co mplex ci—plane , on e must be careful to insure that the y—path will

lie in a region where the exponent will insure convergence of the

in tegra l .  Thus one ca n f ind  these reg ions in the ct—p lane by f i n d in g

where  the real pa r t  of the exponent is negative as follows :

fl r
Re — i k r ‘ C o s( l ~— -u ~ coshczi ~ i sinhcz1 sin (~ _ci~ )} < 0. (2 .19 )

Consider t he case when y 0 , so one may choose the upper sign.

Then the  real par t  of the exponential becomes krsinhctjsin(~
_ct

r
).

For i~~~ < 0 , then , sin (c~o-ci ) > 0 whIch implies

~ + (2 — l ) c  u ~ + 2 it -

For :i . > 0 , then , sin (~ — c i )  ( 0 , so that

~ + 2. rt < ci ~ + (2 +1)it
-

For any a rb i t r a ry  ang le ~ in the upper half—plane , the reg ions of

convergence wi th  a suitable y— pa t h  are shown in Figure 2.3. The

regions of convergence are of width ii and also exhibit repetitive

behavior.

The choice of the y—path also will be sufficient to satisfy

the So~ nerfeld Radiation Condition. For the two—dimensional case

of plane wave radiation, this condition is

.- .~~~~- - .- , ~~~ : P ~~~~~~~~~’V! - - 
~~~~~~~~~~~ - . 

.— —
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I I 
-~~

I I ._......i I

I i I
I —1 I

_ _ _ _ _  ~7r~
-.
~T+# 0 ~~ ~ ,r+4 2w 1

I
~~~~~~~~~i

I I I I
I I —1

Figure 2.3. Regions of convergence with a suitable y—path

:-.. 
— — —-----—-

~~~
- — - . -

~~ 
—. .——— .  - -, -— — .- .  — . — ——
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j im ~ / r  ~~~~~~~ + ik
P]} 

-* 0 (2.20)

S u b s t i t u t i n g  the exp ression for  the scattered pressure into the

Somm erfeld Radiatio n Condition y ields

u r n  [/r ~~~ P(co sa)( l-cos(~;ci ) )  e kr cos(~;ct) 
da1~~ 

0 -

(2 .21)

Again , this  limit can be sat isf ied if the y—path  lies in a reg ion

where the exponential decay allows convergence as r approaches

in f i n i t y .  Thus , the Sommerfeld  Condition is sat is f ied  by the proper

choice of y—pa t h .

2. 4 Fo rmulat ion of the Integral Equations for  an Incident Plane Wave

The preceding section shows that an integral representation for

t he scattered pr essur e does comply with one of the basic requiremen ts

fo r a solution. Specifically, it satisfies t he homogeneous wave

equation and the Sommerfeld Radiation condition through the choice

of y—path .  In this section , the details of applying this  representa-

tion to the d i f f r a c t i o n  of the h a l f — p lane wi th  impedance boundary

conditions will be worked out.

The diffracting obstacle is the half—plane defined by x

y — o and — ~ < z < + 
~~ . The integral representation to be used is

expressed in terms of polar coordinates so one measures angles from

the positive x—axia . Thus, the upper surface of the half—plane is

located at an angle 4 - + ii , while the lower surface is located at

— ,— - - . —- -- - -- — .~~~~ - ~~~~~~~~~~ - . -. 
. -
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an angle f — iT . An inciden t plane wave can be represented as

follows:

p 1 — p e l k
~ 

cos(~P — 4 0 ) ( 2 . 2 2 )

The angle 
~~~ 

also measu red from the posit ive x—axis , will  denote

the angle of incidence- Finally, the upper and lower surfaces have

impedances of Z~ and Z , respectively . The geometry fo r  t he

ha l f—p lane i~ depicted in Figure 2 .4 .

The su r face  impedance is the rat io of the total pressure at

the surface to the outward normal component of the total velocity

at the surface. The transverse component of velocity may be ex-

pressed in terms of the pressure p by

~
~~~~

- kpc r ( 2 - 2 3 )

it follows that the transverse component of the velocity for the

incident plane wave is given by

— 
i ~ E 

ikr cos (c~— 4 3]
i4 kpcr a~ ~~ e 

._j

— 

p sin(~—~~) 
e
ik 08

~~
_
~o
) , (2 24)

and also the velocity for th. diffracted pressure is given by

— 
-: - - . — 

— — . .- — . -~~ — .  .-t — . - ——  —
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SOURCE (4
~~~~~ )

— 77 , Z

Figure 2 .4 .  Geometry for the impedance covered half—plane .

_______ — 
_
~- _.—_--v--- -.- — — —  - — - - — .- - .— .- -.—-——-—-.

~~~~~~~.._.- __ —._—- -
‘

.—.——... 
—. 

—
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i a —ikrcos(~ + ~)v~ — 

~~~~~~~~~~~~~~~~~ [J ( 

P(cos ci) e di~

r — 
sin(~~ci) 

P(coscx) e
_ikrc05

~~~
t)

du . ( 2 . 2 5 )
J

The fo l lowing  boundary condit ions at the upper and lower faces of

the h a l f — p l a n e  must be sa t i s f i e d ,

P p
~

+p ±
— z (2 .26)v - (v +v) ± T

to t  i

or

1- I
p i+p 

~~ 
- z ( v i+v) J ±~ 

. (2 . 2 7 )

Using the expressions found in Equations (2 .13) ,  (2 .22)  (2.23)  and

( 2 .24 )  for  the pressures and velocities , and from the boundary

condition of Equation ( 2 . 2 7 ) ,  one can determine specific relationships

that sa t i s fy  th e boundary conditions . The boundary condition for

the upper surface at ~ — ti becomes:

I ikrcoscxP(coscx)e dct+p a
JY 

0

+ r p a+sin~z I ikrcosct o o —ikrcos~— — — I sinctP(coscx)e dci+ e o . (2.28)pc pc
“1

—.—- ~~~~~~.-— -- .p—.——- —. —~ -——~~~ ----~ 
- -. -
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A similar  expression f o r  the lower su r f ace  at ~~ — — ii is

f P (cosu)e~~~~
05
~ d,i +

— ~~ fs in c ip ( co sc i )ei COS cidct — sIn ~ e~~~~~~~
05

~~0. (2 . 2 9 )
~Jc j pC 0

Let

sine — 2

and

sin0 — .2~. , (2 . 30 )
z

where 0+ and 0 are known as Brewste r angles. These angles have an

important physical significance.- There will be no reflection of a

plane wave from an infinite plane if the angle of incidence of the

plane wave is equal to the Brewster angle. In short , it is the

angle of no reflection.

Usi ng the relat ionships in Equation ( 2 . 3 0 ) ,  Equatio ns ( 2 , 2 8 )

and ( 2 . 2 9 )  may be rewri t ten  as follows :

f P(cosci)(sin0++si~~)eikrc08cida — — p0
(sin0

+_sin0
0
)e~~~~~

05
~0

( 
(2.31)

______________________ ____ - —
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and

f P(cosu) s m U  _ s~~nci) e
lk

~~~
05 L

d — — p0
(sin,+ sin;

0
)e~~~~~

05
~~

(2.i2)

Equations (2.31) and (2 32) represent two integral equations that

sa t isf y the impedance boundary conditions.

It is necessary that the integral representations for the

pressure and the velocity be continuous in the physical space. Therti

is a change in sign in the exponent of the integral representation

as one crosses from the upper half—p lane to the lower half—plane .

To guarantee continuity, the pressure and velocity in the upper

region , y > 0, and the pressure and velocity in the lower region ,

y < 0, must be equal where the two regions are joined ; namely ,  at

— 0
0
. The two regions are not joined together at iT or —it because

the half—p lane physically separates them. Checking the continuity

of the pressure at ; — 0
0
, it follows from Equations (2.13) and (2 22)

that

f P(cosct)e c0sci
dci +

— f P(cos a )e ktC05 ctda + p e ~~~~
05

~ 0 . (2.33)

Th is equa tion implies that the pressure is continuous . However , for

the velocity at q — 0 one finds from Equations (2.24) and (2 25) that

— 
- - 

~~~~ . ‘ - - .—. - —— -—--—: —
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lkrcos~0
I F(cosL )sin~ —ikrcos t 

p e
- — e dA +

=L C o 5 u ) S~~flu e + 
p
0 

ln. 
e r

~~~~0 ,

w~~ich , when s impli t ied , becomes:

P(c os t ) sin t ~~~~~~~~05 t~~ 
— f — P ( c o s  i ) s i n u  e k

~~
05 d . (2. 35)

The three integral Equations (2.31), (2 .32 )  and (2 - 3 5 )  are  a

set of integral equations that satisfy all the requirements for a

solution to this diffraction problem . Specifically, these equations

satisf y the wave equation and the impedance boundary conditions b r

an incident plane wave. To solve the problem one must determine

some funct ion P(cosu), still unkonwn, that will satisfy all of these

integral equations.

2.5 The Solution of the Integral Equations for Plane Wave Incidence

Solving for the function P(cosci) is undoubtedly the most onerous

detail of this study. One attempts to construct the unknown function

P(cosci) by considering functions with proper ties that are sufficient

to satisfy each of the integral equations.

Toward this end , one seeks to close some y—path within a reg ion

of convergence and then evoke the Cauchy Integral Theorem to determine

the nature of P(coscz). If the Cauchy Integral Theorem is to app ly ,

then certain restrictions are subsequently imposed upon the functional

~1~~~~ 
— - — 

~~~ - -. —.—-. ( — . - .
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behavio r ot P (co sct) .  From these r e s t r i c t i ons  one deduces a j unctiona l

form for P(cosct). If this procedure can be acco~.plished , one has a

solution to  the diftraction problem.

To initiate this procedure , one must spec if y a ,—pa ti~ and t:e

regions of convergence th rough  which  the v —path  may be closed

Starting with the integral Equations (2.31) and ( 2 . J 2 )  c or r e sp .~n i i n g

t~ the boundary conditions at ; — ~~, and recalling the earlier

section def in ing  the regions of convergence in Equat io ns (2 .21)  and

(2.22), it follows that these reg ions are

for * . < 0

2nit < u
r 

< (2 +l)~

and f o r  
~~~~ 

> 0

(2n— 1.)iT i . 2n~ -—

F igure 2.5 shows representative y—paths and how they may be c losed

For example , one such path originates at —icx., travels to 0, t~ien to

and terminates at 7r—i~~. It Is then closed at infinity along the

line from iT— ia’ to —i~ . In order to close the path in this manner ,

it will be convenient if the integral  along the par t  of the pa th  at

in f i n i t y  is zero. For this condition to be valid , certain restric-

tions on the behavior of the func t ion  P(coscz) at i n f i n i t y  must be

imposed . In particular , this condition maintains that the absolute

value of P(cosct) must be bounded at infinity. The condition on

P(coscx)  is

- —--~~
-—— -t -.- — — -—  —
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M
P(cos~~) as (2.J6)

(c s i)

and for  .
~ 0.

Now consider , for examp le , the integral Equation (2.31):

f P(cos.~)(sin~~+sinl)e
ik 05

~ d L — p ( j j + j~ )e
4 k

~~~
05

~~.
1 

0 0

If  the y — p a t h  is closed in the ma nner described , one f i nds that the

integral around a closed pa th equals the value of the r igh t hand

side of the equa tion which is p
0
(sin _sin,~0

)e l(
~~

05t
~0. By virt ue

of the Cauchy integral Formula , this means that there must be simp le

poles at ( 2 n — l )~~~ 0 and the res idues are ~~~.sin~~_sin~o)e
1k 05 0

f o r  some y—pa t h , see Fi gu re 2 .5 .  Likewise , the integral in Equation

( 2 .32 )  also suggest the ex istence of poles , bu t with a residue ot

.~~~ (sin , +sin~~ )e ikr cos
~ 0 for some y—pa ths . There are two major

features about the behavior of P(cost). They are:

1. P(cosci) is bounded for 1 , -
~

2. P ( cos c t ) ( s in O ±sincz ) has simple poles at  ( 2 n — l ) ~~~ 0 and
p0 ± —ikrcos ~ 0co rr esponding r esidues of 

~~ t (sin sinq 0 )e

On the basis of this limited knowledge , the function P(cosci)

must be deduced-

it is difficult to proceed without giving some considera t ions

to the physics of the problem. In particular , each of the poles at

(2 n — 1) ri ± 4 0 have distinct physical s ignificance.  As has been

~ 

F— — ,——-—.-— .—- -.-.- - —-—— -~~~~~~ —
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— 
-2-ir ~~ 

() .— 2ir
-iT + ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~

•

Fi gure 2. 5. The y—pa ths  being closed at i n f i n i t y  in the shaded
regions of convergence along the dotted lines.
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previously discussed , th er e is a multiplicit y behavior in the comp lex

t -p la ne , so the poles —ir--q , 
~~c ’ it— 4~~, and it+~ represen t a fa mily

that will subsequently be repeated . These poles represent the

fol low ing physical sign if icance:

a. — i t — -~ represents the angle of the specular reflection
0 

from the lower surface.

b. — ir+4 represents the angle of the geometric shadow boundary.

c. i~—~f. represents the angle of the specular ref lec t ion  from
the upper surface .

d. 
~~~~ 

represents the angle of the geometric shadow boundary

For examp le , when the pole of Equation (2.37a) representing the

reflection from the lower surface is enclosed by a 1—path , Equation

(2.32) must be satisfied , Likewise, when the pole in Equation (2 37c)

representing the reflection from the upper surface is enclosed , it

must satisfy the cther integral Equation (2.31). To accommodate all

these requirements , the solution is considered as a product of two

parts. One part contains the necessary singularities while the other

par t contains an analytic function that adjusts the residues to the

proper values.

Two functions that have the proper singularities are chosen as

(2.38)
sin —i— — sin4v

2

- —. .— ,--—-—.—— - .—.— .—. .— — ~~~~~ —.-. — -. ~~~~~~~~~ . . - —. 
--- .—- - — . ——— . -
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and

1 
- (2 .39 )

sin -
~~~~~ — — sin~2~

2

If the first function in Equation (2.38) is enclosed by a 1—path

tha t includes a simp le pole a t it—~~~, the reflection from the upper

surface , one must modify the function to yield the appropriate

residue- Such a function that will provide the proper residue is

found by trial and error to have the form :

__
S — — .

~~~~
- - -

~~~~
.-———-———. - — - . - - - — —.— ..

~~~~~~.- —
- — -———-- .- - .-.- - —.-
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p cos~ . (sin~ _sino
+
) (s in~~+sin~ ) 

-o o/2 o o —ikrcos,0
2iTicos~~ 12 (sinb +sin~~) (sin~~+sin~- )  

e

— 

p (s in~~—sin&~) 
e
_ t

~
08
~0 -2ni (s in~~+sin0~ )

This happens to be exactly what is necessary to satisf y Equation

(2.31).

Consider the function in Equation (2.39) and enclose the simple

pole at 
~~

— — -

~~

— -

~~~~ 

for the reflection from the lower surface. A suitable

choice that will satisfy Equation (2.32) is

p cos~0 0

- 

~~ i sin(~~~~) 
_sin-

~iL

(sinct+sinO ) sinO
+

+2cosa Icos ~i+4 —TT —sin c&-.~f — l T

sin04+2cosci cosq~~ sin0 +2cosct
2 —

~~ 2 s ~~~ 
~ 

___
~

_._
J

Again , the residue at 4~ —it— c~0 
is given by

p cos~ (sinq +sine ) (sinq —sinG
4
)

2 
e

_ t
~~

08
~~0

4-tn -
~~ cos~~(sin&

’—sinq )(sine —sinq 0)

p (sinq +einO )
— 

o o e
l(1
~

05
~02ini (sinO —sinnt ) 

— —~~~~~..-—-- —.———- —. -- 
-——- - — - —— - .
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which is what is required by Equation (2.32). The sum of the two

functions in Equations (2 4(J) and (2.41) then represents P(cosi)

Separately , the two functions represent the contribution o the

diffracted field due to the influence of the upper and lower surfaces ,

respec tively. In the parlance of Riemann sheets , they correspond tu

the solution in two separate sheets. The continuity Equation (2 35)

imp lies that the solution P(cosci) is cont inuous where they join or

overlap ; namely ,  at the shadow boundaries. As a result , if the

integral is closed b y a v— pat h  that  encloses the geometric shadow

boundary located at —~T+ and , again, if the integral is closed by a

1—pa th surrounding ‘-he shadow boundary located at ~T+’~~~~~~, these two

must satisfy Equation (2.35).

If one checks this requirement for the assumed functions of

Equations (2.40) and (2-41), one finds that the residues at the poles

.-~~‘+ and it+~ in Equation (2.35) &re, respec t ively :

p ccs~0 
-~~~~ (sin&~+sinq )(sin0 +sinq )sin4 e

k
~~

08
~ o

21iIcos~ (sin0 +sin4 ) (sin&~+sin~~)

p sine
o 0 —ikrcoa~—— e 0
2it1

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ .- — -. --- - -
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p 
and

— + —i krcos~p cost (sin-- —s1 n-~ )(sin —s in~ )s in~ e 0
0 0 0 1) 0

+ .- 

+
~ i c o s ~ ( s in  —s In~ ) ( s i n  — s i n - f

—~~ 0 0

p sin~o o —i krcos~- . e 0

2nt

From this result , Equation (2.35) is also satisfied . Therefore ,

the solution for P(coscz) is given by

p cosq~
2

P(cos’i) — — - -

- f i+T1
4n. sin~~

— — sin.~

(sin~_ sin l +) (sin~~ 2cos~

(sin~ +2co s~ cos~ ~(sinO
+
+2c

osi[cos(c
+~~+

)

+sin(c1_~o
+)1 )

p coS~
2

4r 1  sina—in -. sin~

(si~~+sinO ) (sine~+2cosa [cos(a+~0_it)_sin (a_:0_it)]
)

(sin0
+

÷2cosclcos4
) 
(sine +2cosc~[cos(a+~0_it)_sin (cL_ :0_1T)]

p cosq~ 
~~~~ ~~~~ 

‘1
— 4in i 

2 \

[[ir
~
.
~~ 

— sinct 1 + 
~~~~~~~~~~~~~~~~~~~ 

_ sin~~ 1( ~ (2 .42)

- .-—- ~~~~~~~~~~~~~~~~~~~~~ — — ____ —- —. i_ - ..— ~.1.
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where

(sin -i ;sin ~~ ) sin0 4+2cos~i Icos .i+f ±11 ±sjn i—~f ± 71
0 0

1 4 4

sintJ~ +2cosUcos 4~ sin~. +2cosa [~ os a+~ ±71 ±sin ~~~~~~ ± T ~ 1

All that remains to be done for the solution of the diffracted field

is to evaluate the integral  in Equation (2 . 13) using the solution

shown in Equation (2.42) for the function P(cosc~).

2.6 The Far—Field Solution by the Method of Steepest Descent

To find the far—field solution for the diffracted pressure when

kr is large , one may use the method of steepest descent which is

also known as the saddle point method. Essentially , the method is

one of finding the saddle point and integrating on the path of

steepest descent through the saddle point .. Along this path , the

major cont r ibution to the integral will result near the saddle point.

If the y—path is closed along the steepest descent path , then the

value of the integral on y can be replaced by the steepest descent

approximation at the saddle point plus any enclosed residues.

Consider the integral in Equation (2.13):

p(r,~ ) - f P(cos cz) e
_
~~~~

05
~~~~~ dc*
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for the case when O<4.’-n so one may pick the upper sign. The saddle

po int is that point where the exponent has an extremum , i.e. when

-~-~~- (—ikrcos(~ —:t)) — 0

or

—i krsin (~— -~) — 0

and the saddle points are located at

— ~~±2n
’ . (2.44)

The correspond ing steepest descent paths are determined by

Im[— ikrcos (4—cz)) — I [—ikr ) E constant

which is

_ikrcos (q_a~ )cosha~ — —ikr

or

cos (~ _a~ )coshcr
1 — 1 - ( 2 - 4 5 )

Write Equation (2.43) as

1
cos(4—a ) — —

r coshcz

J 
_  

_ _

-.
- 

~~~~~~~~~~~~~ 
- -----

~~
-- .

~~~~~~ 
- - ... 

- 
. -. 

.._ - . - --
~~~~~~~~~~~
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then , for

cOs (1:_a
r
) — 0

or

a — q± (2n—l) . (2.46)

Equation (2,46) predicts the asymptotes of the paths as they tend

to infinity.

Finding the slope of the path is also useful in locating this

path. The slope is determined from the following :

2
dct~, 

— — ~~~~~~~~ 
cosh

dci sinha
r i

/1—  cos
2
(
~
_cz

r
) cosh

2
ci
i

~/~~sh2cL
i 

— 1

—

V cosh cr
1, 2

— ±  ________ cosh cz
I i
/ cosh —

— ± coshci.~ - (2.47)

( From Equation ( 2 . 4 7 ) ,  the slope at the saddle point , ~~ — 0, is 1

and the slope of the asymptotes are ±~~. As a result of Equations

____________ - —.——-— .- — - -—.~~~~~~ .- --- ~~~~~~1-~~~ .. —. —~
- .-

~ 
- .____

~~~~~— 1
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(2.46) and (2.47), the steepest descent path is shown in Figure 2.6.

For an observer angle ~—~~ <4<iT , the steepest descent path is chosen

acco rding to Equations (2 . 46 )  and (2 . 4 7 )  and the requirement that  it

also must l ie in a shaded reg ion of convergence. It should be noted

that the pole at 71— is contained within the closed path.

To determine the far—field solution, use the Residue Theorem to

evaluate the integral over the 1—path.

Using the Residue Theorem yields

f P ( c o s .i)  e 
krc0s

~~
.cz

d +f  P(cosa ) e krc05
~~

_
~~ du

— iii Res (it—~~ ) — —2itx Res(71—q )

Then using the steepest descent approximation, Erdelyl 114), it

follows tha t

~ 

P(cosa) e 
c0s(t

~
a)

da — — ri Res(Tr—~~ )

—f P(coact)

SDP

— 

p sin~~—s1n&
1 

e rc05
~~~~o

)

2 sin4 +sin&
1

~2 f lhJ2 ~~~~ iin/4
+ 

~~ 4iti e p
0

cO Sc~012

[sin(~~~-) 
- sin~~

J 

+ 

[sin(~~~~ ) — stn~~
]

-— -
~~~~ 

- -- —a--- - - .-—
~~~~~~~~~~~~ 

,
~~~~~~~~~~~~~

- .. -- - --- -
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I I
— I —

F J i ,~~.J DESCENT
I 

~~~~~~~~~~~~~~~~~~~~ 
PATHF— I

~~ iHL -fr-- 1
I ~~~~~~~~

_
_ __ _  —

SADDLE1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
PO INT~

Figure 2.6. Steepest descent path for the far—field pre with
71—41 < 41 < ii.

L
‘V

~ 

~~~~ — - - -— -- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • .- ~~~ ~~‘~~~“• 
- - - . - ---—- .-
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for kr large

I —ikrcos(~- -ci) p0 -ikrcos(~ -; )P(cosci) e — 
~~ 

C e o

j 7 1 /4  —ikre e p cos41012 
)  

t
1

(~~)

2v 2’kr ~sin~ 
— sin~~

2

t - - (~)
, p2 48)

—

[
2

where

+
— sin41

C —  
4

Isin~ + sinG
0

is the reflection coefficient arid 
~i,2 

are defined in Equation (2.43).

It is interesting to ncte that the residue of the pole that is

surrounded by the closed path contributes the geometrical optic term ,

namely, the specular reflection , while the steepest descent path

contributes the diffraction tens. Consequently, the far—field

d i f f ract ion , wi thout  the geometrical optic terms , can be expressed

simply as

i71/4 —ikr
e e p cos41012 ‘Y1(41) ~~~~~— 

2/ 2inkr [5i~ (-~~~L ) _ si n 4 1 ]  [sin( .~~!~)_ sin 4 1 j

(2.49)

4 _______ - _ ,_ - - .  - ..- .--— -- — • —-.- -  —- .-~



Next , consider the case when the observer  angle is 0<~~ 71—-:. - The

path is closed along the steepest descent path but the pole at ~‘— ;

is surrounded in a d i f f e r e n t manner as indicoted in Figure 2.7. This

causes a change in sign of the geometric term in Equat io n ( 2 - 4 9 )  and

the so lu t ion  in th is  region becomes

P(r ,~ ) — f P(cos4 e
k 0 8 4d~i

— — —
~~ 

C e c0s~~~-~ 0 ) 
+ P

d
(r ,

~~
) - (2 50)

This j ump in the specular  term physically represents the sudden

t ransi t ion across the ref lec t ion  shadow boundary at In short ,

one f inds  tha t  the re are three dis t inct  regions to the so lu t ion ;  these

reg ions are l is ted in Table 2 - 2  and the corresponding physi cal regions

a re shown in Figure 2 - 8 -

Table 2 , 2 . The three regions for  the f a r — f i e l d  solution

Region I
7 1 — i  <

~~~~~~~~ <~~~~~ p + p
o d i f f r a c t i o n  r e f l e c t i o n  inc

Region II
— 1 1 + 4 1  < 4 1 < 7 1 — 4 1  p

o o d i f f r a c t i o n  inc

Region III
—71 < 4 1 <  — 71 + 41 pdiffraction 

- - -. ---- - , - - - . - - --..-
~~~~-—~~~~~~~~~~- —- . -- - -~~~~~—-- .-~~ - - - -----
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1
~~~~~~~I I

-2ir 
+ 

~
° iT

I +7T- 4b I

Fi gure 2.7. Steepest descent path for the far—field with
0 < <

(

—.— - -I—-- - 
~~~~ 

-— - - - -- . - . —.—— —~ -- 
~~~~~~~~~~

. — —. - -—- --: — -
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SOURCE

REGION I /
AEFLECTION

SHADOW
BOUNDARY

+7r 7 T4 ~0 — REGION 11
-iT -iT+4~~

REGION 
~~ SHADOW

BOUNDARY

Figure 2.8. The three regions for the far—field pressure solution .

I
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The far—f ield -~o lut ion  is helpful in searching for the nulls in

the diffracted and backscattered field . If the solution is considered

in the form shown in Equation (2.49), an expression for the zeroes of

the diffracted and backscattered pressures may be found .

For the  case of d i f f r a c t i o n  an expression that locates the nulls

may be determined if both surfaces have the same real impedance

This expression is given by

1 sini
sin41,’ 2 

~ sln41 
(2 51)

o/2

where e_o
+_o _pc/z

It may be determined from Equation (2.51), that when the impedance is

real there can be at most one null in the diffraction function. An

expression may also be found for the nulls of the backscattered

pressure. In this case there can be at most two nulls in the solution ,

if the impedance is real- When the impedances are the same on both

surfaces , the expression for the location of the nulls is gi’ien by

sin41 - / ~~~ sinG - (2 .52)

2.7 The Near—Field Solution for the Diffraction of a Plane Wave

In the far—field approximation, one notices a jump at the

geometrical shadow boundaries . In reality the transition across the

shadow boundaries is continuous . This contridiction occurs because

the steepest descent approximation is not valid if the saddle point

is in the vicinity of a pole. As a result , an exact solution is

— -.- -v—.— - ~~~~ -_——~- — -—-—---—— .——.——~~~~~ •. —. —~~~~~- —. — - 
—..—-- ._;
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needed to eva)uate the solution there and in the near—field of the

edge.

To achieve an exact solution , consider P(cosa) in the form

P (cos.i) — 
ci+4

~ 
+ a— 41 (2.53)

cos —
~~---— cos

where the functions 
~l ~~~ 

are defined as:

~ ( )  - ~o A (U)~~~~ + A (O~ ,
a) 

± 
A( e~,)~~ + 

A( 0 ,a)~ cos~~~~~)~~~~ 
~~~~~~~ B(8~ ,~ ) B(O~ ,a) B(0 ,a)J 

2

+ 
C(0~ ,@ ,a) 

, (2.54)
B(O’~,u)B(G ,i) J

where -

+ + ~~~~o
±11 

______

— (sinG ; sinci) sinG + 2coscr/2 cos ± s i n  —

(2. 55)

+ + — 
~

— (sinO + 2coscx/2 cos41 /2) sinO~+ 2coscr/2~cos

±71 1

± sin , (2.56 )

arid

C(&
+,O ,c~) — (sinO —sinO ) sin .(D.sin0~~sinO +[sin&~+sinO )

E + 2coacr/2 cos$ ,2~
E) ,

a - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-. -- -- -
~~~~~--~~~~~~~

— . . -- ~~~
-- -~
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with

a+41 ~~~~ 
I a-41 +71 cz-41 -iT

I) — cos ~ J + cos —i—— + sin — sin 4
0 

— cos41 12

and

cz4-41 +i u-41 +11 1 a+41 -71 
~~~~~~~ ~ 71

E — 2~ cos~z/ 2 cos + sin 
4

0 
J •  CoS 

4
0 

— sin

(2.57)

A special case exists when one surface is rigid; I e., or 0

equals zero. In this event then, and 
~2 

can be simplified into

the form

P

4~’i

[± (9j f l~~+ 
s in c i) ( s in (

+
+2cos~~/2 . cos 4 1 ,2 .s in( 4

0)

— ( s i n o
+

+4.cosa /2.cosa /4.eos(~~~~~~)) .(sine+÷4c05a/2 cos~/4.cos( 0
4)

± ±
cos —

1.0
I + 4 1 + n 1 r  +
{sin0 +4cosa/2 cosct/4 cos ~ j[sinU +2cosc~/2.cos41012j

(2.58)

— 0when 0 — 0

I

— -- — - — .~~ -- - . - -. —
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and

P

~ (~ )2,1 1

(s in~’ ; s in i)  s in  + 2 c o s t / 2 . c o s~~~,2
.cos 

4 
-

~~

;(sin ; +4.c05i2.cosa/4.co+
,4

_71/4))

— 41 +17

(sin: +4 cos.t/2 •cos~ /4~ cos sin

1.0 
__________ ______

s1n +4.cosczf2.cosci/4.cos(.....2...._)][sinO +2.coscL/2.cos41
,2]

(2.59)

when ~~~~ — 0
0
.

The singularities of P(cos ) are contained in the terms tha t

appea r in the denominator of Equation (2 .53)  while the functions

~~~
. (4 are smooth and well behaved .
i ,2

One seeks to f ind the near—field solution by closing the 1—path

along the steepest descent path and then evaluating the Integral along

the entire length of this path rather than just at the saddle point .

To achieve this , consider the integral along the steepest descent path

as

- .-—

~

--

~

-

~

- - - - - - . - - ——
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I —ikrcos(~
. —~ )P(cosi) e d L

DP

~~~~(cL )—j 1 
c~+q~ 

+ 
2 

cr—41 
e cos(41.

~
cr)dc~ . (2.60)

SDP 
~~~~

It may be argued that since ~I~~(c&) and ~2
(n) are smooth and slowly

varying functions near the saddle point , then they may be removed

from under the integral in Equation (2.56) and evaluated at the

saddle point ci—~~. This results in the following integral along the

steepest descent path:

J P(coscr) e t05(41 )dcz
SDP

r e
_ rt08(41_

~~ dcr r e
1
~~

C05
~

41
~~
)
dci

- ‘
~l
(41j c~+41 + 

~~~~~ JSDP COS SDP ~~~ 2

(2.61)

For the moment , consider only the first integral with a change of

variable ct 41—cz. This change of variable will affect the 1—path , the

regions of convergence , and the steepest descent path merely by a

lateral shift of the angle 41. In particular , the equation for the

steepest descent path becomes

1coca — . (2 .62)
r coshcz

- — .~~~~
.------- -~~~~~~ -- - - .—-.-.-- .--.-- - —.— - — ~~~~~~~- .--. — • - - . - - -  - .. — --— -
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This change of variable transforms the first term in E q u a t i o n  (2.61)

to

e—ikrcoscz
d~iI u—41

LDP cost 2 )

1 1 1 —ikrcos.L
+ le- 

~~~~~ 2 (u-41-41 
_____

LDP [cost 2 o) ~~~ 2

(2.63)

Using the steepest descent path from Equation (2.62) and rearranging

the integrand , Equation (2.63) becomes

~
(41)I 

-ikrcos~e
dci

I ct-41
SOP cost 2)

r — ikr — k rsinhajsin a rJ cosa/2 e dci

ISDP
- ~ 1

( 4 1 ) •2 cos~~~~~~~ 
[cosci + cos(41+41 ) )

(2. 64)

It also follows from Equation (2.62) that

sin-i — tanhcz
1 
. (2.65)

r

Substituting from Equation (2.65) into the integral in Equation (2.64)

it follows that

-p 

__________- -~~~~~~- -~~ - - . -- -. .- -. - - -
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ikrcosci
e

SD? ~~~ 2

4~ 41 I -ikr —krsinhczitanhctj
- o j coscr/2’e e

— ~~~~~~ 2 J [cosci + cos(41+41 )J
SDP

(2.66)

Since the exponent in the left side of Equation (2.66) decreases

monotonically away from its maximum value of 1 at ot . 0 to —
~~~~, it

is convenient to change the variable from ci to t ,

where

sinh-.i tanhu — (2.67)
0 i

such that , as T runs from —
~~~ to ~~~ , it traverses the steepest descent

path. Thus the steepest descent integral may then be made into an

integral whose limits extend from —
~~~ to +~~.

The change of variable that is needed is then

T — /7 e
_ i T

~
/ 4  

sinci/2 (2.68)

with

dr ~~~~~~~ e
_ i111EI4 cosci/2 dci - (2.69)

Substituting Equations (2.68) and (2.69) into Equation (2.67) it

follows that  

—. .— . . - ——.--.~~~~~.-- — - — - - - - 
- - — .  —;- —— — —..—--- .
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—ikrcoscr
e dci

1
SOP cos 2

41+41 — ikr  —krTo cosci/2 e e dT
— 

~ (41 ) 2 cos — I

[cosci+ cos(41+41 )]coscr/2 e
_ i11

~
’4 / 2

-ikr i~/4 2 ~~~o I e~~~
T
2
dT

— — e  e ~ (41) — cos
1 2 

~~~~~ 2
[2cos —i-—— — 2sin cr12)

- ~1
( 4 1 ) e e 2~~~~ cos ~~~~ 

~~~~~~~ ,

.J—°° 2 2 41+41o~t +P2 cos

- 411(41)e
_
~~

re~~~~
4
2.bf 2 2 e

_
~~

T
2
dT , (2 .70)

where

41+41
b — cos —

~~
—

~~ . (2.71)

The integral in Equation (2.70)  can be expressed in terms of

the complex Fresnel Integral. Consider the integral

r°° ,~~2

I — b j  
e 

2 dT (2.72)

( J_ 0, T +ib

__________ -- ———--——~~~~~~ —~~~~
- . - -. 

-—- - ;  - .—--.
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with ~ — kr. From Equation (2—72), it follows that

d -ib
2
v r -(T

2
+ib

2
)v

le __ b j e dT

2 (~v 
j

— j e dt ,r~ j.~~

wi th

— /—:ç;— -r

- be
_
~~~

V
~~~ (2.73)

From Equation (2.73) the integral in Equation (2.72) may be written

as

2 r -ib
2v

I — /~~ be~~ 
e dv . (2 74)

\~

Letting v — T2/b 2 and considering b positive, then Equation (2.74)

becomes

I — 2/~ e~~

2
’
~~; 

e~~
t2 dT

41+41
— 27T F cos ....—2. ~r-~-j ~ ~ (2 .75 )

where F(a) is the complex Fresne]. Integral defined by

- 

~~~~~~~~~~~~~~~~~~~~~ 

— 
—

. 

.— —-———- . . - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~ . -.- - - 

- - —  . — 

.~~~~~~~ 

- -
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F(a) - e~~
f 

e~~~ dT - (2.76)

Some useful  proper ties of F(a) are quoted from Clemmow [4]. For

2 ’~~ 2
F(a)  — eiaj e

i 
dT

and

(a)

F (a) - e~~~
f 

e~~~~ dT , (2.77)

the following identities are found to be useful :

F(a)  + F ( a) - /~~ e~~~~
4 
e
ia (2 .7 8)

and

F(s) + F(—a) — /~~ e~~

71

’~ eia
2 

- (2.79)

Since the integral in Equation (2.72) is an odd function of b , the

corresponding result when b is negative becomes

I — —2 /i F(— b T~~ ) , (2 .80)

so consequently,

I — ±2 /~~ F(±b/~~ ) . (2.81)

— -~~~ -- - - -- - — -— —~~~~~~~ — - • — - —. 
- -~



54

Substituting the expression in Equation (2.81) into Equation (2 66)

and finding d similar result for the second term of the integral in

Eq u a t i.~’n (2.bl), i t  follows that an exact expression for the integra-

tion along ~:.e steepest descent path is

J~0~ 
P (coSL)e

_ ik os(
~
_4

dci - ~4~~~(41)/~~ e 
k r_ i11/4

F{+/~~~ cos41+41~~

~r e~~~~e~~~
”4FLt/7~

j cos41—41 - ( 2. 8 2)

Aga in , consider the first term of this expression. Using the identity

found  in Equation (2.78), it follows that

~~~~~~~~~~~ 
e

_
~~

r e
_ 111/4

F [±~~~~~ cos (~~~~~)1

- ~~~ (41)/it e
_ i

~~ e 17l4~~~~~ e 11/4ei2krc05 2 (~~~~~)

_ei2krc082(~~~~) F (±~~~~~

— 

~~~~~~~~~~~ 
e
_ r -i11/4 e

4
e

re rcos (41+41o
)

. . ~L C(±/2kr cos(4*41~)

-is(±~~~~ cos(41~~~ ) )  . (2.83)

v——-- - -—- -- -- - ~~~—.-- .- ~~~-- ——  ..— . - --
- 

- -.-- - - - --- - - - — --
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where

C(a) - /L  fcosT2
d! (2.84)

and

s(a) — / ~ fsinr
2
dt - (2 85)

Equation (2.83) is finally written in the form

F~±/~~~ ~~ .1

—

~l.0-~~~ ~~~~ C(± T ~~~ cos(41
~~0)_iS(±~~~~~ cos( o)) } (2 .86)

A .~- imilar expression found for the second term of the integral in

Equation (2.82) is

f e
_ i

~~~
c0
~~~

41_
~~ da 

-

J SD? cos(__~
_
~)

~l.0 
- /~ e

i71I4
~C (~~~~~~ cos(~~~~))-iS(±/~~~ cos(~~~~ ))~~

The near—fie ld  solution for the diffraction may now be written as

(

— . - —----.——— —____._ ___- ___ — - — ~~~~~~~ — — ~~~~~
S-

•
. — - 

— - — -
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pd
(r ,41) —

I ~~~ ~~- 
~~~ 

I
1.0 — /7 ei /4 [c~±/~ ~~~~~~~~ —iS ±/~ i~i cos

~~~~~~~~~~~~~~~~~~~~

1.0 - ~~~ e~~
’4[c(±~~~~~ cos(~~~~ )) ~j~ (±~~~~ cos(~~~~~~)) ]

~
(2.88)

2.8 Diffraction of Line Source Radiation

Up to this point , the type of excitation has been a plane wave.

In this section , a line source dis turbance will be considered . The

incident radiation from a line source is given by

— ikR
p — /~ e~~~

’4p0
H~~

2
~ (kR) 

~ 
p0 

e 
, (2 .89)

fo r kR>> l and where R is the distance from the location of the source

at r ,0 0

It is help ful to express the line source in the same integral

form of the preceding sections. Starting with a line source located

at x , y and into the z direction the line source must satisfy the

following wave equation:

- - .~~~~--—- -—- - - . . -— — .-~~~~~~- .- -. —

-~



57

2 2a a ~1 2
+ -— ~~

— + k — 4i1p 6 ( x— x ) ó ( y — y ) ( 2 . 9 0 )

App lying Fourier Transforms on x and y, it follows that

— 471
— 

2 ~~~2k —y —n

where

~~, r~ r ~~~~ — iy (y—y0)
p
1 

— 

~ i 2 2 
e dydr i . (2.91)

j 
~~~~ 

k -y -n

L e t v ’ ~~ and

then

- i- r ~~~~~~~~~ 1
— 1 ;- e~~~”~ ”~~

o
~I 1 2 2 dy d\) . (2 92)

IT ~o [J~~~~~ 
(8 —y ) j..)-co

The inner integral In Equa tion (2 92) may be evaluated using

the residue theorem, closing the path of integration from —
~~~ to ~

in the lower half-plane and enclosing the singularity at +8. This

yields

e~~~~~~~
o) — iB(y—y0)

p
1 

— —J p
~ 

e kdv . (2.93)

-~~~

_~~~~~
_ ,. -. .

~~
- ,

~
.• — - — - - —

~~~~~~~~~~~~~~~~ 
______ - -.
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Next , let x—rcos41, x —r cos41 , y rsin41, y0—r cos41 , and v—coscr

which changes the integral in Equation (2.93) into polar coordinates

and gives the following result:

p~ p
0
e
+ikro005(41o

_
e
_
~~

rc05(41
~~~ dci . (2.94)

It can be shown that the integral in Equation (2.93) is equal to

~iH~~
2
~ (kr). With this knowledge and the help of Equation (2.89),

the line source has an integral representation

177/4

— 

p e  
fe~~~~o

t08(41o
_

e
_

rt0”41 ci) dci (2.95)
i 

~~~~

It is worth noting that the representation for a line source is a

convolution and is obtained by multiplying the plane wave by

—ikrcos (41—cr)e and integrating with respect to ci.

If such a procedure is also applied to the plane wave solution

for the diffraction , a line source solution will result. This can

be shown by considering the integral equations analogous to

Equations (2.31) and (2 .32 )  fo r  the boundary conditions for  a line

source. They become , respectively ,

—~~ —- -T--- - - - — -- .— ---- - .---- - — — 
~~~~~~~- ~~~ 

a— —- -- - - - -
~ 

- —-------- . —
~~~~~~
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—iir/41 1 P(co s~~, cos8)(sin0
+ ikrcoscr e _ikrOcos (41O—8)d8ld~+sinci)e e

J y

— ilT/4

— — 

p e  ..
~ikr cos(41 ...8) + —ikrcos8

(sinG sin8)e d13 (2.96)
/217 ~~

and

C I —ikrcoscr j e e
roc05 (410_ 8

~ d8~ dcLJ j P(cosci, cos8) ( s inO —s in cr )e  
[1 1

—j i i/ 4
p eo —ikr COS (41o_ G )

(gin8~~_sj n8) ikrcos8— —  / e 0 e d8 . (2-97)

Closing the path in the region of convergence and using the residue

theorem, it is evident that the same functions found in Equation

(2,42) satisfy these integral equations -. As a result , the solution

IOL the line source can be written as

—iit14 f 11 
~~ 

(ci) 
~~~~~ 

l
e
_i

oC08(41~~
8)e 

__________ ___________P(r , 41) — rr~j  J ci+8 
+ 

c i 8I cOS (__ ) cos 
~~~~~~

— 

~~

~( 
yL 2

_ikrcos (41_cr)
dPd~ (2.98)e

where 411
(a) and 412 (a ) ar e given by Equations (2.53) through (2.57).

Evaluation of the integral in Equation (2-98) is much the same

as the procedure for the exact solution derived in Section 2.7.

Since the functions and ~2
(ct) are smooth functions , th ey are

evalua ted at the saddle poi nt , a”41, and removed from under the

-I 
_______ ____________ _________ _______I~ r~J_ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _  _ _ _ _- .v— ~~ .-.———.— — — -.~~~~~~ .-- — —— . — —~- —~~

—.- -; —. - —— —— -
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integral sign. The resulting integral is

e~~~~
”4 ~~ ~~ e

t o008 (410_ 8)
e

krt08 (41
~~~~

p (r ,~~) — -
~ 

(41 ) 1 1 — dcrd8
1 

cosf~~~)

~~~~~ ~~

‘ 

~~~ e oC0 8 ( 41o_ 8)
e

_
~~~~~~

09 (41
~~~~

+ 
~~~~~ Jj 

~ ~~~~ 
dcid 8 . (2.99)

Using the change of variable 41~
— 8—8’ and 41— cr— cr’ , the f i r s t  term

of the expression in Equation (2.99) now becomes

—111/4

— ~~~~~ L_[~0 5 ( 41~0~-~) e r oc058
S

k1
~~

08cr
d~~d8 . (2.100)

41+41 -cz+8
Multiplying the numerator and denominator by cos , then,

________ 
—ikr cos8 —ikrcosci

—1 /4 , j cos e ° e
~ (41)e 2 d8d

1 1 ,p~~ J J 41+41 -ci-8 I 41+410
-ci+8 

ci

I I cos cog

411(41)e~~~
”4 f ~ 

cos(41 
_a+8)_i~~~coB8 i~~~o$a

2/~~~ J1J1 f (
41+410

_a) , 

1co6 (41
~°~

) +8th812}

~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -

~~~~~~~~

——----...--—--.-— .

~~~~~~~ 

-
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___________ 
1 1 1 

___________________- 

2v9~ JJ 
[

(41+41o
_c
r)~~~~~~ l

+ 

[cos(~~~~~~)+sin8/2J

e
kr0c058e~~~~

c05ci
dcid 8 - (2.101)

In the first term of the integrand in Equation (2.101), change c~ to

—ci , then

4 ~1(41)e~~ 
‘
~ 1i cos(~~~~)

cosa/2cos8/2 e r0cos8 OSi
d~ d 

-

~~ J i  I 
_ _ _  ~~~,y1 1 1co8~~~cos8 2 4sim 
2 ~ 2sin8/2+2cos

(2.102)

Now use the change of variable

— /Te
_i11

~
’4

sincr/2  and r~ — /Te~~~
”4sin8/2 (2.103)

which results in

— 

4~1(41)e~~~
”4 

~~~~~~ 
e~~

t
~

r+
~o
)

1 
,
,~~~~~

— 2

2 2r r —ikr0~ —ikr~ d

J_
~oJ_.~ {~

2+ 2
+ 2 i ( o)~~ +2 2 ( 4 ~

41
0)]

- . - — . 
- 

—- --- — -  .- -—--—.--.~~~~~~ -—— .—-- - --- .---- — -.~~~~~~~ 
— -. — . ~~

. 
----- --- . - - —- ______



62

Using another change of variable to p and y ,  where

- \f _I pcosy and n - psiny (2.105)

with

R
1 

— (r+r ), (2.106)

it then follows that ,

- - 

~~~~~~~ 

41
1(41)

~~ 1k~~ cos(~~-~~) ~~
pK(p)e~~~

1P dp , (2.107)

where

dy

cos2y+ J!- sin
2
y+2sin (~~

41
0)sinycosy] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(2. 108)

The quantity K(p) was evaluated according to Clemmow [4 ) ,  such that

41+41
21T sec

K(~~) - 
___________________

/
~
4+2iP2_ 0 cos2(~~~ 0) . (2.109)

—a- - - --——-—— -I---- — —----. .———-. — —
~~~~~ — —.

~~~~~~~ - —*. -—- -;
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Substituting Equation (2.109) into Equation (2.107) yields

I - ±41 (41)~~~~~4*e
_i11/4

e
_
~~

Rl f pe 1 
,(2.llO)

1 1 
Jof j;2+i(R

1
_

S)].{p
2
+i(~~:.~.fl

/2 2 
_____ ~~~0 -~with S — / r +r —2rr cos —a and ± f o r  cos — 0

o o 2 , 2 <

Set iA2 — —ik(R1
—S) + kR1

p2, then the integral I~ can be put into the

form

I - ±41 (41) ./7~ e~~~~
4e~~~~ r ______ 

dA . (2.111)
1 1 j  /A ~+2k S

When k(r+r )>1, an approximation for Equation (2.111) can be made

b y replacing the non—exponential part of the integrand by the value

of A at the lower limit and removing it from under the integral sign,

such that

4 1 (41~r~f e
_ 1 4

e
U
~~ r~- e dA ,

1 
~~~~~jj--.~~

-
~ J

441 (41) ,/9~ e
4e~~~

’
~ ________

— ±  
1 — F(/ k(R — S) ,

V1 k(R
1+S) 1

- - - — - —
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ikS

~~~~ 
(41)e 

_________ _________

.1.0 - /7 ~~~~~ ~C(/ k(R1-S) ) -iS(/ k(R1-S) ) 
~~~
j .

(2.112)

A similar expression can be determined for the second term 12

in Equation (2. 92) .  As a result , the solution for the line source

when k(r+r )>l can now be written :
0

f1f1 P(co sci, 
_ ikr ocos(41o_ 8)

e
_ ikrcos( 41_ ci)

d8dci8) e

—ikS E4iri41
1(41)e 

I 
________

- 
_______  

I 1.0 - /7 e~~ ~~ c(/ k(R 1-S) )-iS(/k (R1-S)
/ 2k(R1+S) L

—kR ~~4iii41
1
(41)e

_ _  
1.0 -

/7k(R1
+R) [ 

iIT/4 
~C( / k(R

1-R) -
iS(/ k(R

1
-R) 

)}]

+ (Geometrical Optic Terms)

where

R — /r2+r 
2—2rr cos(41—41 )o 0

~ 
/2 2

— r +r —2rr cos (41+41 ) ,o 0

and

R — r+r . (2.113)
1 0

_ _  -— -~~~~~~~~~~~~~~~~~~ -- . - - -~~~~~ --- -~
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An asymptotic approximation for the line source solution may be

made if the location of the line source and the observer are both very

far from the half—p lane, i.e., kr -
~ ~ and kr 

-
~ ~~ . Apply ing the

method of steepest descent to the double integral in Equation (2.89),

the far—f ield approximation becomes

p e 1 /4
e~~

k
~~~

ro~ 41 (41) 41 (41)
p (r,41) — 

0 1 + 2 
, (2.114)r~ r~~ ~~~ ___  ___o cos 2 

con 2

which may also be written as

p e~~ 
/4
e

k
~~~~o

) T 
~~~~ _________________p r ,41 —

d /Tr2ITkr / 2lrkr ~sin(~j!)
_ sin

) 
(sin(—f.\_ sin

0) j

(2.115)

2.9 The Diffraction of Point Source Radiation

The diffraction caused by a point source excitation can be

determined by considering the integral.

I P(cosci)e
_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ dci
p ( r ,41 , z)  — I  ‘ (2.116)

Jy k/~~+r0
2+2rr0cos(41_a)+(z_z0)

2

where P(coscr) is defined as in Equation (2.42). By analogy to the

plane wave solution, this can be regarded as a spectrum of point

sources. A point source located at r , 41
~

, and is expressed as

—.-,----—— — ___ J.t____ .___ _-
~~

__ — .._ ___.._ - — — ..—-—— - — - . - . — ____ _I
~~~~~J.- — ~~~~~~~~~~ 4 — —. 

. — — - - — -— ————  —
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p ~~~~~ 
r2+r 2

— 2rr cos (41—41 )+(z—z )
2

p1(r, ,
z) - ° 

-
- . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. (2.117)

k/ r2+r 2-2rr cos(41-41 )+(z-z )
2

Applying the boundary condition on both surfaces yields integral

equations analogous to Equations (2.31) and (2,32) which are expressed

r espectively as:

J P(cosci)  sinG++r
os inc r [l_  •_

~
]
~ 

e
1
~~ dci

—ikR~
— —p sinGt~r sin41 [l_ •

~
•]
~ 

kR* (2. 118)

and

P(cosc r ) )sine — r sin41 [i_ 

~J} e~~~~ dci

-p ~sine +r sin41 [l
_ 

ij }  
e~~~~

* 
, (2.119)

where

/ 2  2R — v’ r +r — 2 r r  coscr+(z—z )
0 0 0

and

— /r2
+r
0
2_2rr

0cos410
+(z_z

0
)2

- - . - - - — ~~~~~~~— ---- - .. - - -——--- -—~~~~~— — ~~~~~~~~~ . -~-—--.
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If the I—path is closed in the region of convergence and the

residue theorem is applied to the singularities enclosed , then the

func tion P(cosci) of Equation (2.42) will indeed satisfy Equations

(2.118) and (2.119). This implies that the result in Equation (2.116)

is the diffraction solution for a point source excitation.

Because the exponent in the integrand for the point source differs

from plane wave integral , it is helpful to check the regions of

convergence . Also , because of the square root term in the denominator ,

branch points must be accounted for.

Consider the function in the exponent

R(ci) - /
‘
~~+r0

2+2rr0c
os(41_cr)+(z_z

0)
2 (2 120)

The bra nch points are located at values of ci where R( ci )  — 0, which

implies

2 2 2
r +r +(z—z )

~rr 
° — cos(41+ii—ci) (2.121)

— coed

— coshci ‘cosci ‘ 
,i r

where

(1’ — 11+41—Ct

Since (r—r
0
)2 — r

2
+r 2

— 2rr > 0, then r
2+r 2 > 2rr . It follows that

-~~~~ -n -. - - S- - - - -  
~~~~~~~~~~~~~~~~ .— r-  — -. “-- — : - —- —— -. —-
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2 2 2 1r +r +(z—z )
I ° ° > 1, (2.122)2rr —

0

As a result of Equations (2,122) and (2.121), the branch points are

in the complex plane and located at

ci ‘ — 2n r T
r

and

r2+r 2+(z— z )2

ci ’ — ± c o s h 1
I 2rr

0

or

ci — (2n—l)-n+41

and

ci
1 

— ±b . (2.123)

The branch cuts originate at ci — (2n—l)IT+41±ib and extend along

st raight lines to inf ini ty  at ci — (2n — l)rr +41±i~ . The function R(ci)

can be written in the form

R(ci) — RI ”2 ~~~ — ~RI
112 (cos~4*isiwp) , (2.124)

-~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~ 
- . . - - _ _  

-_ _ _ _ _ _ _ _ _
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where

2rr sinhcr
i

sin(41_ cx )
tanijj — — 

0 r (2.125)
r
2+r 2+2rr coshcr cos(41—cr )o o 1 r

To guarantee convergt ~ace , the condition sinI~ < 0 is required . This

is necessary so that the exponent will reflect  a decaying behavior

and , th us , allow conv ergence of t he integ ral in Equation (2.116).

The Table 2.3 helps to locate the regions of convergence by

listing the values of ci such that R(ci) is real. These values will

determine the boundary between the regions of convergence and the

regions of divergence. Consequently, f rom Equations (2.124),  (2 . 125) ,

and Table 2.3, the branch points and regions of convergence can now

be illustrated in Figure 2.9.

Table 2.3. The values of cir and crj that describe the curve
in the cr—plane as R (cr) traverses the real axis.

dr dj  R(ci)

(2n—l) 7 1 + 4 1  ±~~~

(2n—l) 71 + 4 1  ± b  0

(2n—l ) IT + 41 0 ± /(r+r)2 + (Z_Z )2

(2n+l) It + 41 0 ± /(r+ r ) 2 + (Z—Z )2

(2n+l) 7 1 + 4 1  ± b 0

(2n+1) IT + 4 1  ±~~ ±~~~

_ --—. — —- . -—— —- p 
~~~ 

— — -.—-— - —  — — _•_—I_ — - — 4 — —. 
. — — -
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B R A N C H  CUTS

— I — I
I I

~~ -~~~+~~~+ ib I ~ I I

2
~~~~~~7 

I II ~~~~~~~ I I
- 

_ _ _ _ _  ~rLir+4 ~~~.- i r 4 ir +4_ 27r 1

IBRANCH 
~~

_—
~~~~~~~

1POINTS

IE
~~~~~~~~~~~~~~

’ I i~~
jI - - i bi  ir +4 - ibI — I

I —1I I I
- - I

I I
Fi gure 2.9. Branch points , branch cuts and the shaded regions of

conver gence f o r  a po in t  source .
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Evaulation of the integral in Equation (2.116) proceedB in a

manner similar to that for the plane wave and the line source. Using

the function P(cosci) in the form of Equation (2.53), the smooth part

of the function is evaluated at the saddle point and removed from

under the integral sign so that

( —ikR (ci )
p ( r ,41 z)  — 

~~~~~~ 

e 
dci

)y cos
( 2 o)~~~(Ct)

r -ikR (ci)
e 

ct-41 
dci . (2.126)

Jy cos 
2 

°

Consider the fir3t term and cose the y—path along the line i°~ +41 to

—i’m +41. This results in the following integral for the first term:

C _k/~~+r 2
+2rr coshci ~~~~~~~~~~~~ )

2
I 0 0 i o idci

1 — 4 1 ( 4 1 ) 1  e I
1 1 j  ici +41+41 ‘2 2 2cos ~ ~ kv’ r +r coshci + (z—z )2 o i o

~ 
I i i 1 1

— 
l(41)

J 
~~~ 141+410+icij l + 

[41+41 — ici~
—~~~ ~cos{ 2 j ~~~~~~~~~ 2

_ik/
’
~~~~~

2
+2rr +(z—z )

2
—4rr sinh

2
ci

e 0 0 0 0 i/2 idci~

( k / r2+r0
2+2rr0+(z_z0)

2_4rr
Øsinh2cii/2

I
—--- —

- - -  —-- - - -— .~~~~~~.- — - -~~
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41+41
= 

~
(41 )J 2cos —

~~
-—— coshcr~,,2

[cos(41+41 )+coshct
i

)

4rr sinh
_ik/~~~r0)

2+(z_z
0)
2
] 1- 

2~~~~~~~

(r+r )
2
+(z—z)

2

e idcr~
(2.127)

2

k/[(r+r0
)2+(z_ z ) 2 ] F1 4rr sinh ~ /2 10 i

o L (r+r0) 2+(z_ z ) 2j

2/~~~ —iir/4Using the change of variable ~~ — 
R
1 

e sinhcr~ /2~ where

R1 — /(r+r0
2
+ (z_ z

0
) 2

, and applying the identities cos(41+41 j

2(~~~— 2cos ~~~~~ —l and coshcii — 1—2sinh
2
(ci~/2)~ the integral in

Equation (2.127) becomes

r _____

1
1 

41
i(41)e 

2/krr ~~~~ 1- 0 0
— 

kR 
- 

R
1

—ikR /l_iT2 _____
e dT 

/1—it (2.128)

..~~~ 

[ 
2 ~~~~~~ 2 ~~o~ 1T +i4~~~~~~~~ COS

2 j j

Expan d the exponent term , kR1/
’
~ ..T 2 , In a Taylor series . If ~R >  1,

F

retain only the first two terms of the expansion , evaluate the slowly

varying function (l~iT
2
)
1
~
2 in the denominator at the saddle point

_ _  _ _ _ _ _  - --~~~~~ - - —
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t — 0, and remove it from under the integral sign. As a result , for

kR1 
> 1, the integral becomes

i~ 1(41) +iIT/4 
2V~~~~0

— — 
kR
1 

e 
R
1

ii I
ikR l (  

2 ’

I ; 
_

- l--~-J

di ,
[4rr 41+41 %1 )

— ___ 2 o i I ç ,
~
2
+i ~ cos

L 

[Rl
2 2 J J )

— ikR111/4 1 
12~’~~ ~~~~ ]

_ _ _ _ _ _ _  
0 ( 0

— — 

i41
1(41)e e

L R
1 

cos t 2

kR1
-r 2

~~~~

2 
di (2. 129)

~ 
[ ~~ 21~~~o 11’

cos

which is in the form

2kR
1T

e e 1 b 
— 

2
iir/4 —ikR

____________________ 
e di (2.130)

(i2+ib
2
)

— — _____________________ ________

0 Q2 ~~~~ 
(

41+41
where b —  cos 2

— ~~~~~~~ — .— . -
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The integral in this form is identical to that of Equation (2.68)

which now yields

-ikR1

Il - ~~~~~~~ 

I41
1 
(

~~
:

i71/4e 

F{
±f~~~~~ ~05r

°)]  
, (2.131)

ikrr

—ikR 2 [cos(4~ 41 )+l]

71141
1(41)

e 1
e 

R1

kR
1

x ~~~~ ~~~ e~~~~
4 {

C ( / 2 ~~~~0 
cos(~~~~~))~~iS(I

2

~~~~
0 cos(~:°))~]

The re is a similar expression for the second term; thus, the

exact solution becomes

ikr r

~~~~~~~~~ R 
° [1+cos(41+41 ) J

11141
1(41)

e 1
e 

1

p (r,41,z) —ci kR 1

T~~ Q ~~~~ {(~~2~~~~ cos (~:~°) ~~~~~~~ 

~~~~~~~

° ~~~~~
(2.132)

(
.

~~~~~ 

—. - — ______ - - .
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ikrr

—ikR
1 R

1 

° [l+cos(41— 41 ) )

ITi41
2(4)e e

±
kR
1

2krr 141-41 ’0 0 
_ _ _  _ _ _

krr (41_ 41
x ~~~e~~~

4 

{c (fR 
~~~ 2 ))_~~(~ R

1 
cos
(~~~~))J]

The asymptot ic  app roximation f or the point sour ce may also be

made when 
~~l ~~ 

~°, kr -
~ ~~~ , kr. In this event, Equation (2.116) may

be simplified to

ik2rr
o 2f~~~~

—ikr
1 

R1 
sin 1 2 1

p(r,41,z) — f P(cosci)e e dci
______________________________ (2.133)J y k /r2+r 2+2rr cos(41-cx)+(z-z )

2 
-

0 0

Again, the steepest descent point is ci — 41 . The far—field approxi—

nation may then be wri t ten as

171/4 —ikR
1r~ P(cos41)ep(r , ,z) — , (2.134)

‘~~~

where P(coa41) can be found in Equation (2.42).

I



CHAPTER LII

NUMER ICAL RESULTS

3.1 Introduction

Numerical results for various source type and location, and

impedance cover conditions are presented in this chapter. The para-

meters are varied to explore the dependence of the diffracted pressure

and the backscattered pressure on the impedance cover . Calculations

are also made for  a va r i e ty  of source and observer locations. Special

a t t e n t i o n  is given to the  f a r — f i e l d  approximation. All graphs are

polar p lots of the angular  d i s t r i b u t i o n  of the d i f f r a c t e d  or back—

sca t t e red  pressure measured in decibels relat ive to the amp l i tude  of

the incident pressure .

3.2 I~~edance ConF .iderations

In the solution b r  the difiracted pressure for all three source

cases, the paramete r  that determines the impedance condition is the

variable or 0 .  From Equation (2.30), one recalls that sin(’)—pc/z.

The varIous impedances that are considered in this study and their

corresponding values of 8 are listed in Table 3.1.

Table 3 1. impedance Conditions and their corresponding Brewster
Angles 8.

Z pc/Z 0 Brewster Angle

Pressure Release 0

Matched pc 1.000 90°

l . l6pc .866 60°

2 .OOpc .500 30°
0Rigid 0 0

I- ~~~~~~~~~~~~~~~~ 
— - - - -
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Computations were pertormed using the impedances listed in

lahie 3.1 for speciti reasons. Th e cases when ~i — ~i or ~i — U . ire

t u r  t h e  . 1 i s s j ~~t 1 L~~~~~~ O - , 01 pressur e t e i c . t — .e (suit) and ri g id boundary

conditions respectively . I ht- ~~~ ot  ~‘ — Yi is part iL u I 1t ly

inter est in ~~ si ii~~t - this L~~~~ St  ep r e se n ts  t tot illy at)-~~rb lug S u it  *L 5

r u e  u t~~er  cases a re  -.. iii p u t e d  to  c ~~ .-te ~ range of examp les.

e.ich ot h i t -  d i l t t - i ent s- u r ~~u ts t ~s , t h e  t u — ~t ~~C i ~~~ p t e s s A r e  has t~~.-

~.(n R- an~.. d a t  dt p e udt ’ n  - t- as gl en by Equ .it ~~~~ U.  • -
- ) . This .sngul r

dep en d enL . is ~ai~~uI,t t &- ..~ ti in d iLa t e only ti ~~ - p a t tern 1 t u e

~u e s s u & -  i t  i s  poss i b l e to a~~- at  most one zero occu lT Lug i n  t .-

t a r — I  ie ld  d i t t t - i t~~d p r e s s u r e  and , ii most . two n u l i s  o~~ u t r tng in

the t. .i r—fi e l d •tLj . -....It t ered ~i i e ..snt Ike tnt ~.-n . . 1  t h e  ~~~~~~d .tiu e

t ! i & -  lu at ion nu~ is is I ~~ a..-- t -~ ed by t es. co.put.~ i - u

3. 3 ~ i u r  - v - s t - I vet  onsiderat Ions

ui. location oh th e obie- t vet Is v u - i c - I  In an a L t c n 4 t to d.t.rsine

t h e  ett eLt ot t t -  r ad ia l  p-I ! i u e t .et and I t  angle ot in~ id.n..e ‘n the

be h av io r  u l  t he  d it I t a c  i .-~ or b,4Lkscgt c~ . 1  ~e~ sure I k e  d l inens i ii-

Ies~ v a r :au .l e s ~r , , and k ( j - z  ) ..t e considered t o T  a wide rang.-
0 0

va lue s  to demonstrate the t ia n sit t ’ n  t i o w  th e  n e a r — f i e l d  t o  t h e

tar— i icid. - i u ~~a i isoms are also made between the  t h r e e  t y pe s  o t

source conditions when the radial variables ar, considered.

in the case of diffraction , the angle of incidence was chosen

to be — 1200 as a r ep resen ta t ive  case. For ba ck scat ter , the angle

of incidence and the observer angle are equal . In other words

41 — 41 in Equation ( 2 . 4 2 )  for the backscatter pressure.

- — 
. - — — - ~~—~~~ 1~ 

—
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3 .~ Ditirac ti on and Backsca t t e r ing  of a Plane Wave by an Impedance
Covered Half-Plane

A l l  ot  t he  g rap h s  tu r the  d i f f r a c t e d  and backscattered pressure

are  in  polar  t ol ~ . and are  measured  in decibels  re la t ive  to the

.tmp iit ude o t a -  incident pressure .  In the exact solut ion fo r  the

~ ‘ I t n i - ~a ’ . - e- , t a I .* tot • kr  appea r s  in the argument  01 the F resnel

I n t e g r a l s  is shown 1- .’ E q u a t i or  (2. M~.1). C o nsequently, this magnitude

~ t t h e  pressure will 1u~u in i sh at a r a t e proportiona l to 1. vkr.

hi- . iu s e  of t h i s , i t  is  desirable i n o r m a liz e  t h e  p r e s s u r e  by the

~. a f l e  t a~ tor i i i  - i d e r  to .i .ill tate th. comparison ot successive

d i 1 f r a ~~ ion ~~. t .  As a I t - s u i t , what Is r e a l l y being shiowlu in the

- - t  s is (r • I ) ‘  k r  . i n et .~~ t , -n c is observing only the angular

: . - , . - : u - . I.-n ‘ ot  . .  dit i S L t e d  or b a c k s cat t ,r .d  p r e s su re .  r h r ou g u ~)u t

‘i t s  - ~ C er I t ie te i :- ‘‘1 - U I .  i l l - i t  ~~~ Is ~ - i I owed  I ron the  I le ld  of

t i s  i i i  cOl  • ~~~~~ - tid s t o  t i c  ex p r e s - . ion “ insoni I ted ” in , us t .  i , , v .

lIter . a r e tou rtt-eii I i gu r e . ,  tha t dea l with t t w  dii tract ion ot  a

• ~~* &i t -  wave by a alt—plan .. In all t these plots , the angle - t

tn~ h - i t  • is  set at  — 1200
0

The I n f l u e n c e  1 the impedance i t  the i l l umin a t e d  surfa ce is

co nsidered  in t h e  tir e t ei g h t  f i g u r e s .  The se t i gu re s  a re  p lo t ted

t o r  the fo l lowing  p ar amete rs :

1. Figu res 3 . 1  and 3 . 2  have an impedance on the illuminated

su r fa ce , O~ — 30°, and U • 0 (rigid) on the uniliuminated

surface. In Figure 3.1, kr is 20 and 50 and in Figure 3.2,

kr is 100 and infinity.

t
a. 

_ _ _ _ _  _ _ _  —
- - 
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2. Figures 3.3 and 3.4 have 0~ — 60° and 0 — 0° (rigid).

The values for  kr are 20 and 50 in Figure 3.3; and 100 , and

i n f i n i t y  in Figure 3.4.

3. The impedance conditions are O~ = 90° (totally absorbing)

and 0 — 0° (rigid) in Figures 3.5 and 3.6. In Figure 3.5 ,

kr is 20 and 50 and in Figure 3.6 , kr is 100 and inf ini ty .

4. Figures 3.7 and 3.8 represent the situation of pressure

release on the illuminated sur face 0+ — i5 and rigid on the

opposite su rface  0 — 0
0
. The values of kr are 20 and 50 in

Figure 3.7 , and 100 in inf i nity in Figure 3.8.

The next four  plot s demo nst rat e how the impedance on the

unilluminated surface influences the d i f f rac ted  pressure. The angle

of incidence ~~ 12O~ .

Figu res 3.9 and 3.10 represent the d i f f r ac t i on  by a half—p lane

w i t h  p ressure release impedance on the unilluxninated surface , i . e . ,

0
+ 

— 5i , while the illuminated surface has 8 — 0° (rigid). Again,

kr — 20, 50 in Figure 3.9 and kr — 100 and infinity in Figure 3.10.

The impedance condition on the upper surface in Figures 3.11

and 3.12 is 0+ 
= 90° (totally absorbing) while 0 — 0° remains the

same . In Fi gure 3.11, kr — 20 and 50, while in Figure 3.12, kr — 100

and infinity .

The influence of an imaginary component of impedance is con-

sidered in Figures 3.13 and 3.14 where 0+ — 30 + i.l and 0 0
0
.

The angle of incidence is 41 — 120° and kr — 20 and 50 in Figure

3.13, while kr — 100 and in f in i ty  in F igure 3.14 .

— —— - — —.--- - - —  . -.— 
— - . —.-

- 
p
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The next ten plots a r e  ~~n erned with the b ks~~.i t t e r e J  pressure

F or  t u i s  s i t u a t i o n , tk~e s~~u rC S and ~b s er v e z  are at the same p o s it i un ,

i.e ~ — in Equa t ions (~ ..2) and (2.52). The dependunce of the

backsc.~ttered pressure on the impedance cover  can be studied by

comparing the iollowing plot ..:

1. Ihe impedance conditions for Figures 3.15 and 3.16 are

300 and U — 0. The variable kr is .?O and 50 in Figure 3.1~ ,

and kr is 100 and infinity in Figure 3.16.

2. In Figures 3.17 and 3.18, — 60° and 0 - 9 i° ~. i1e kr •

and 50 in Fi gure 3.17, and kr — 100 and infinity in Figure 3.1S.

3. Figures 3.19 and 3.20 have a totally absorbing upper surface

with ~ — 90° while 0 — 0
0
. In Figure 3.19, kr is 20 and 50,

while kr is 100 and infinity in Figure 3.20.

~a . The impedance conditions in Figures 3.21 and 3. .~~~ represent

a pressure release upper surface — 15 and a rigid lower

— 0surface 0 — 0 . Again , kr is 20 and 50 in L igure 3.21, and

kr is 100 and infinity in Figure 3.22.

5. In Figures 3.23 and 3.24, the impedance cover is the same

on both sides with O~ — 0 — 3Q0 The values of kr in Figure

3.23 are 20 and 50, while in Figure 3.24 they are 100 and

infinity .

3.5 Diffraction and Backscattering of Line Source Radiation by an
Impedance Covered Half—Plane

Computations for the line source are made primarily to study the

effec t of the source type and location on the diffracted and back—

scattered pressure. In order to compare these graphs with the

4. ___________ ____________

-~~ — —— .  — .—- ---—-- —-- —-- ---__ _—~~ — —. -.



95

0a ~U, a U

U .;..

L a

~~~~~~~~~~

I U

+a

-4
a

>

- a
-4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0
00

—4

0)

•oa
aa
— ‘I.’

a
I 0)

Ia

a

- a

~~~~~~..—
.- —--—.—-. . — -—..~~~~

— — —
~ 

——.- .



I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



97

U

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .--- ,-~~~~-~~~~~~~~~~~~~~~~~~~~~ - .- -‘



9

— —. ____—*.--~~~~~~--- 
_r — .—‘. - - - . — — — .. — — — ~~~~~~ . — — -.-- —.. — . - — ——fl—



#9

Ca C
a U

II

a

_  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~1



100

I-

z
— a
z 0a 0a if

II 7 I

-a
a -

~~

I U

o +
C

‘-a
a
*4

a 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•a 0 -
~~a

— a
a

II 7
a

-a
1-.

a
I

L~ 
—-i 

— -— - —— 

a 

- _  

~~~~~~~~~~

- . 

~~~

- —— - — ———-—-— - —



p 

I U I

a C

a C

a Is

_ _
-t

~~~~~~

: ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ .



1 O~?

a

a

-I 
_________________________________________ ___________ 

______________ 
_____________... .a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ___________________ -— 

.

~~



103

a ) 0

U, a N
-a, a _\ -J

II 
.

.- . 1 C
II I /

-

~~~~~~

\\ a /

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a

>a -
~

-

- a

0 

O~~

—-a

a

-3

- -  - -
~-~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~:



104

I-

z
L~. C

7
U

I I
—

a ‘I

‘A
C --4

a
N
I -s
a 

-~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a

•C
— a -;o -~~7

0)a I-

I 00

a
1~a
N

a 

U
.4

_____ ____ _ _  

up-~~— —— — — - —— —-—-. — -— — ._.__s_ ..~~~~ 
__i — — -e_ - # - - _—— — - — — - —  --—— 

~~~~~~~~~~~~~~~~~~ — _ ,_ .—:— —--——s - ---  — —s-- — -  -

_ _  -J



105

diffraction of a plane wave , the angle of incidence is kept at

— 1200. For the line source the magnitude of the pressure

diminishes at a rate proportional to l/v’kr l//kr as implied by the

argument of Fresnel Integrals in Equation (2.113) and the denominator

of Equation (2.114). Consequently, the calculations for the line

source are normalized by the factor v’k rA r  in order to permit a

better comparison of results.

The next four figures are concerned with the diffraction of

line source radiation. They are shown in an attempt to illustrate

the influence of kr on the behavior of the diffracted pressure.
0

The values of kr are chosen to be kr — 20, 50, 100 in order to
0 0

provide a range of values.

In Figures 3.25 and 3.26, the impedance on the two surfaces

are — 60° and 0 - 0. The value of kr is fixed at 50, while

kr — 20 and 50 in Figure 3.25 atid kr — 100 in Figure 3.26.0 0

+ 0The impedances in Figures 3.27 and 3.28 are 0 — 90 (totally

absorbing) and 0 — 0. Again, in each of these figures, kr — 50.

In Figure 3.27, kr — 20 and 50, while in Figure 3.28 kr — 100.

The next three figures represent the backscattered pressure

of a line source. For this situation, the source and observer are

at the same location; i.e., kr — kr and 4’ — 4’ in Equation (2.113).

In each of the following figures , the impedances on the two surfaces

are equal. In Figure 3.29, the impedance conditions are 0
+ — 0 — 300,

while kr — kr — 20, and kr — kr — 100. The impedances in Figure

3.30 are 0+ 0 — 600. Again, the radial parameters are kr — kr
0

— 20, and kr — kr
0 

— 100. In FiSure 3.31, the impedance conditions

are - 0 — 9Q0~ while kr — kr • 20 and 1cr — kr — 100.
____________________ — —--_.~

___— - s -  — ——
~~~~~ —- 5-- - — . -fl- 5_
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3-6 Diffraction and Backscatterin& of Point Source by an Impedance
Covered Half—Plane

The last type of source to be considered is the point source.

For this case , it is necessary to specify the relative distance in

the z—direction , k(z—z ), between the source and the observer , as

well as the parameters 1cr and kr
0. The dependence of the diffracted

pressure and backscattered pressure on k(z—z ) is explored in this

last section. The magnitude of the pressure for a point source

decays at a rate proportional to l/vi~Tr1 l/~~~~•l/,’~~~as demonstrated

in Equations (2.133) and (2.135). Consequently, the calculations

are normalized by this factor in order to facilitate comparisons

between the different plots.

The diffracted pressure is considered in the next group of

figures. The parameter k(z—z
0) takes on the values 0 and 100. The

purpose of using these values is to investigate its influence.

There are two combinations for the variables kr and kr that are used .
0

these combinations are kr — kr — 20, and 1cr a 1cr — 100. Again

this choice is made to provide
°
a range of cases s:itable to explore

their influence on the behavior of the diffracted pressure. The

graphs are displayed in such a manner that one may examine the trends

as k(z—z ) varies and as kr and kr vary . These calculations are

then made for two representative impedance conditions. In both

cases , the impedance on the lower surface is fixed at 0 — 00, while

the impedance on the illuminated side has the values 0+ — 600 and

0 090 . The location of the source is fixed at 4’ — 120
0

The diffracted pressure of point source radiation is illustrated

in the next six plots.

—. 5--- —~~-- 
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Figure 3.32 shows the diffraction by a surface with impedance

condi t ions  — 600 and 9 — 0° for kr — kr — 20. In this f i g u r e

k(z-z ) — 0 and 100.

Figure 3.33 has the same su r f ace  condit ion with — 600 and

B — 0° but kr — 1cr — 100. Again , one may jud ge the inf luence  of

k ( z — z ) since it has the values o~ 0 and 100.

The impedanc e conditions in Figure 3.34 are once again 8~ — 60°

and 0 — 0° but k(z—z ) — 0. One may consider the effect of kr and

kr since they take the  values of 1cr — kr — 20 and kr kr — 100.

In Figure 3.35, 0~ - 90° ( to ta l l ing  :bsorbing ) 0 - 0° and

kr — kr — 20. The two plots in this figure are for k(z—z ) — 0,
and k(z—z ) a 100.0.

Figure 3 36 shows a half—plane with 0+ — 90° and 0 — 0° with

1cr — kr — 100.

la the last figure for diffraction , B~ a 90° and 0~ — 00 while

k(z—z ) — 0. The plots in Figure 3.37 are for kr — 1cr0 
— 20 and

kr a kr — 100. They illustrate the effect of kr and kr
0 0

The final series of figures investigates the backacattered

pressure of an impedance covered half—plane for a point source

excitation. For backscatter, the source and receiver are at the

same location, so k(z—z ) is always zero. Computations are made

for kr — kr — 20, and 1cr — 1cr — 100, These values for 1cr and 1cr
0 0 0

represent the cases when the source is close to the edge and also

( when it is far from the edge. The two representative impedance

conditions used for this group of figures are 0+ — 0 — 30~ , and
60°.

— .5_fl— - —r ~~~~~~ —-—- - — - — .— 
._——- _—________ 

‘—5——.-- — — — - -— —  ~~~~~~ _— 5— a r-  •
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Figure 3-38 shows the backscattered pressure for kr — 1cr — 20

and 1cr — kr — 100 when — 0 — 300.

Figure 3-39 whows the backscattered pressure for 1cr — kr — 20

and kr — 1cr 100 when 0~ — 0 — 60.
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CHAPTER IV

DIS (TSSION OF RESULTS AND CONCLUSIONS

4 1 In t roduc t ion

The major  task of t h i s  i nves t iga t ion  is to model ma t hemat ica l ly

a ce r t a in  physical  s i t u a t i o n  and derive a solution based upon that

sodel. Specifically, the problem of the diffraction of acoustic

waves by a locally reacting impedance covered half—plane is solved .

The solution resulting from this analysis is significant in that it

is a closed form solution. Being a closed form solution facilitates

the actual physical interpretation of the problem . A discussion of

the physics of the diffraction problem solved in Chapter II follows

in Section 4.2. Additionally, some specific cases are examined for

the influence of the impedance cover on the diffracted and back—

scattered pressur e These results are illustrated in Chapter III

and are discussed in detail in Section 4.3.

4.2 Physical Interpretation of the Solution

The solution for the diffraction of sound radiated by various

types of acoustic sources by a locally reacting impedance covered

half—plane provides an opportunity to study the nature of the

diffraction phenomenon as well as the effect of many parameters.

Since th2re are three types of acoustic sources considered in this

study, each lb discussed in turn emphasizing the differences between

them.
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The solution for the diffraction of a plane wave consists of

two terms . This is evident from the solution shown in Equation

(2.88). The form of each term is really very similar , differing

slightly in three places. The first two differences are the plus and

minus signs in front of 4’ in both the exponents and in the arguments

of the Fresnel Integrals. The third difference is in the functions

and ~~2 Each of the two terms have the exponential functions

ikrcos (;-4- ’ ) —ikrcos(4--0 )e 0 and e 0 , respectively. Taken by themselves ,

these two exponents  represent  plane waves propagat ing in the d i rec t ion

~,f the reflection and in the direction of incidence. The fact that

these two factors are present in the solution hints at the existence

of both a source and an image source in the solution. Incidently,

Sommerfeld’s formulation relies heavily on the concept of sources and

image sources- These two terms in the diffraction solution are not

sources and images, however , because each is multiplied by a term

containing the Fresnel Integrals. The functions containing the

Fresnel Integrals have certain interesting properties that

characterize the diffraction solution.

When investigating the behavior of the Fresnel Integrals, it is

most important to consider the arguments . The arguments of the two

terms are, respectively:

1~~~,‘ 21cr cos —~ ---— , (4.1)

I-—

— — -5- S --S. . _ 
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and

cos - (4-2)

- 1/2It is immediately evident that each argument has the same (kr)

dependence. This dependence on (kr)1’~
’2 

manifests itself in two

aspects of the solution . First , as 1cr increases both Fresnel

Integrals , C(X) and S(X) approach 1/2 at a rate proportional to

(k r )~
t 12 . As a resul t , the en t i r e  quan t i ty  that contains the Fresnel

In teg ra l s  decays to zero at a ra te  proport ional  to (kr )~~~~
2 .

Subsequently, the diffracted pressure should also decay by the same

rate which is the expected decay of line source radiation. Secondly,

the quantity kr influences the oscillations in the diffracted pressure

because of the varying phases of the two terms of the solution.

Because of the nature of the Fresnel Integrals, the phase varies at

a rate proportional to t-he square of the argument . This m~’ap., that

the phase is directly related to 1cr rather than (kr)1”2 . This can

be demonstrated by comparing Figures 3.1 and 3.2. The number of

oscillations occurring in the plots increases in direct proportion

to 1cr. As 1cr is doubled from 1cr — 50 to 1cr — 100, the number of

osci l la t ions  also doubles .

The arguments of the Fresnel Integrals in Equations (4.1) and

(4.2) also show a dependence upon the angle. Note that at 4’ — 11—4’ ,

the argument in Equation (4.1) goes to zero while the other argument

given in Equation (4.3) goes to zero at 4’ — —IT+4’
0
. It is no accident

that these angles correspond to the reflection showdow boundary and

—- r ~~~~~. 5- -5.-
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the incident shadow boundary, respectively. The Fresnel Integrals

are  zero when the  arguments  are zero . As a result , the two terms

t h a t  con t a in  the Fresnel  In tegra l s  are maxima at their respective

shadow boundaries . This behavior of the arguments contributes to

the ability ~ t the diffraction solution to accommodate the dramat ic

transition that occurs across the shadow boundaries. Consider for

the moment only the first term in Equation (2.86) evaluated at

This term becomes

+ -11crP (sink’ — sin4’ ) e
—

o 
+ 

° . (4.3)
2 ( s i i r  + sin4’)

Meanwhile, the argument of the Fresnel Integral in the second term

is V 21cr sin: and , if kr is sufficiently large, this second term

as a whole will be negligible because of the (kr) 112 decay. All

tha t survives , then , at the reflection shadow boundary is what

appears in Equation (4.3). Incidentally, this value has the specific

physical interpretation of being .~C , the reflected wave where

(sin4’ — sin0~)
C —  ° 

+ 
. (4.4)

(sin4’ + sinO )

The quantity C
r 
is the coefficient of reflections of a plane wave

incident at an angle 4’ on an impedance covered infinite plane whose

Brewster angle if 0+. At the incident shadow boundary, —n+4’0 , the

solution equals —p t2. This is one—half the incident wave. The

— - - - -- --
~~~

- 
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behavior at the two shadow boundaries demonstrates that the pressure

is continuous across them. At the dramatic transition between the

illuminated region and the shadow region , the pressure becomes the

average of the pressure between the two regions.

It has been previously mentioned that the figures in Chapter III

illustrate dramatic oscillations . This behavior results from the

interference of waves as they propagate away from the edge. The

exact mechanism that causes this phenomena is not immediately clear

from the solution. To explain this interference phenomenon, it is

helpful to consider a plot for the diffraction of an incident plane

wave at 4’ — 120° by a perfectly rigid half—plane. This plot is

now shown in Figure 4.1 for two different values of 1cr. Note that

there exists the same kind of oscillations that occur for an

impedance covered half—p lane. This suggests that the oscillations

do not result from the influence of an arbitrary impedance cover .

If , however , the absolute values of the two terms in the solution

for the diffracted pressure are plotted separately they appear as

smooth functions as illustrated in Figure 4.2.

Note that these two smooth, pear—shaped plots have their

respective maxima at the location of the two shadow boundaries and

then each diminishes away from that angle in both directions. It

seems then that the oscillations results from the interference

between these two terms. Since they are both complex functions , the

( phase differences gives rise to the interference behavior as they

add in and out of phase. In addition, the plots in Figure 4.2

suggest that the oscillations result from the wave interference

- —~~~~~ -- - - ~~~~~~~~~ ~~~~~~~~ — ~~~~~~~~~~~~~~ — -- — ~~~~~~~- — —~~~~~~~~~ . -- —
-
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129

CO
I I C I

C I  I
‘-“ I I ~I L~~~ I ~II
I t  I C-

5-_I

I -3

a -o:~a

0
-:3

a

fmr~\

~~~

UJtL

~~~~~~~~~
_

C
0

--4
‘A
C)

I-.

- -4
C

CO
aa —4

H

F ,
_ _  _ _  

_— — — - — — -.— .— .——---.~~~~~ — — — -— —. .. —5 —————. — - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~—~ ——~ . —- —:



130

C

—I
0

~~~~~~~~~~~~~~~~~~~~~~~~~~

0
4,.,

CO
a iia

4-.U’. a

II
ahi

a ~ o ~~II I ~a) 4-4 4-a
II 4.~

-A a O I - - 4 -I

I 4.4

—5’— - .
a .c-~-‘.0 ~-4 ct, .~

a(

-. - 5-  - -—v-- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — - — ---—5--—— — — — —5——  

~~~~~
5
~~~b— —~ ~~~~~~~~~ 

. - — — — - - a —



131

developed between the  four  boundaries:  the two shadow boundaries

at 11—4’ and at —ii+4’~ and the physical boundaries ± iT .  In light of

this interpretation , it is interesting to look at a plot for each

of the two terms when the angle of incidence matches the Brewster

angle. For this case , there should be no reflection. Figure 4.3

represents the two terms for a 1200 incident plane wave where 0+ — 60°

and 0 - 0°. Note that , in the plot for the first term , there is a

zero at the exact reflection shadow boundary. However , even though

there is no reflection , there is still a contribution away from the

reflected shadow boundary. The plot is almost omnidirectional

except for the null at 11—4’ . On the other hand, the plot for the

second term clearly indicates the shadow boundary at —11+4’ . Again

the interference phenomenon occurs when these two complex terms

are summed and plotted in Figure 4.3. in short , the implication

is that the oscillations in the diV acted pressure are a result

of the interference between the waves interacting with the four

boundaries , the two shadow boundaries , and the two physical boundaries

at ± 11.

The fact that at the exact shadow boundary the diffracted

pressure converges to the mean value between the two regions is

particularly interesting when viewed in comparison with the result

given by the far—field solution at the exact shadow boundary. The

far—field solution is given in Equation (2.49). In the far—field

solution there are singularities at 4’ — IT—4’
0 
and at 4’ —

because of the denominator. Consequently, the solution blows up
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at the shadow boundaries. This , of course , is not realistic. One

does not actually have an infinite pressure. To explain the apparent

fallacy, recall that the f a r — f i e l d  solution results from the steepest

descent approximation. If the saddle poi nt , however , - lies nea r a

singularity , the method fails. This is, indeed , the case when

— 11—4 ’ or 4’ — -11+4’. Consequently, the far—field solution is not

really valid when it p redicts inf in i te  pressure at the shadow

boundaries. It is in these regions, close to the shadow boundaries ,

where the behavior of the Fresnel Integrals is necessary to account

for the dramatic transition across the shadow boundaries .

It is appropriate , though , in cases where kr is very large to

ac cept the f a r — f i e l d  solution because it does illustrate that the

greatest diffraction effect does occur at the shadow boundaries .

It is good enough to satisfy one’s physical intuition so long as

one recalls that the pressure has diminished at a rate of (kr)~~
’2

and that , at the exact boundary, what appears to be an inf in i ty

should really be one—half the mean between the two regions.

The far—field plots are helpful in searching for the nulls in

the diffracted and backscattered fields. If the solution is

considered in the form given in Equation (2.49), an expression for

the zeroes of the diffracted pressure and backacattered pressure

may be found . These expressions may be found in Equations (2.51)

and (2.52).

Much of what occurs in the plane wave solution also occurs in

the solutions for the line source and the point source. All three

- — — — —- —5—— -,— — — _~-S ~~~~~~~~~ —~~~~~~~~~~~~~ —- —-— — • -
~~~~~~ . 
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are essentially examples of constructive and destructive wave

interference between the two shadow boundaries and the two physical

boundaries. There are , however , a number of minor differences in

each solution that require some amplification.

The diftraction solution for a line source is given in Equation

(2.113). One can apply a limited geometric interpretation to this

solution by once again thinking in terms of a line source and a

corresponding image - In order to appreciate this , consider Figure

4.4.

The parameters that appear in the solution are R1, R , and S.

From Figure 4 . 4 , the values R and S are the distances from the

source and image to the observer point , while the value — r + r

is the path distance a wave must travel from the source to the edge

and from there to the observer.

The famous reciprocity theorem is also verified by this solution.

If the values for 1cr and kr are reversed in Equation (2.113), which

is essentially reversing the position of the source and observer ,

there is no change in the solution.

The solut ion for  the point source is given in Equation (2 . 132) -

Like the solution for the line source , there is a similar geometric

interpretation. Also note that for this solution , the reciprocity

theorem is once again validated. By reversing the values of 1cr

and kr and also the values for kz and kz , the result remains
0 0

unaltered .

In the point source solution, the variable 1cR1 
has an

interesting physical interpretation. The length is the shortest

__________ _________________ — 
~~~~~~~~~~~~~~~~~ — —S 
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Figure 4.4. The geometry for the source, image source , and
observer for  an incident line source.
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distance a ray may travel from the source to the edge of the half—

plane and finally to the observer. The appearance of the shortest

path distance in the formula is a manifestation of Feranat ’s principle

on the diffraction of a bundle of rays. The fact that R
1 appears in

the solution verifies the principle. Figure 4~5 illustrates the

geometry for the point source , image point source and observer. The

dashed line indicates the shortest distance a ray would travel when

going f rom the source to the edge and finally to the observer. The

geometry for the path of the ray is detailed in Figure 4.6. From

this figure , one realizes that the triangles OAB and SAC are similar ,

the length from B to C is (z—z ), the length OB is r and the length

SC is r . It follows that0

— _~~~~~_• (4.5)

and

(z—z ) — AB + AC
0

r
- AB + AB —~~r

r+r
— AB ~7_2 . (4,6)

Consequently

— 
r(z—z )

AB — (r+r0) 
(4.7)

-1•
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Figure 4.5. The geometry for the source , image source , and
observer for an inc ident line source.
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and

~ (z—z )0 0
AL = . (4.8)

(r+r
0

1h~’ distance

— - )  z — z  2

= r~ -4-r~ (4 .9)

and the distance

z—z 2
r 

2
-+-r 

2 
_ _ _  

. (4.10)
0 o r+r

0

F ina l l y ,  one can calculate the distance from Equations (4.9)

and (4.10) as follows :

1(
1 

— OA + AS

— 

r
2
[(r+r )

2 
+ (z—z )

2
] r

2 [ ( r+ r ) 2 + (z—z )
2

(r+r ) 2 ( r+r ) 2

+ (z—z )
2 

. (4.11)

In summary, the solu t ion for  the d i f f r a c t ion of the rad ia t ion

of each type of acoustic source illustrates the occurrence of con-

struc tive and destructive interference and demonstrates the validity

of the Reciprocity Theorem and Fermat ’s Principle.
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4 . 3  Discussion of Resu lts

The numerical results  that were compiled in Chapter III are

discussed in this  section.

For the p lane wave one may compare the transition from the

near—field solution to the far—field solution from any of the

Figures 3.1 to 3-14. For example, in Figures 3.1 and 3.2 , it is

evide nt that  increasing kr results in a more complicated phase

interaction as indicated by the increase in the number of oscilla—

— d ons in the plots. It is also curious that even at kr — 100,

which represents approximately 15 wavelengths from the edge, the

solution does not yet produce the clearly defined null that appears

in the plot of the far—field . This is a consequence of the fact

that the exact phase canceLlation required to form this null only

occurs at kr equal to infinity, which does not exist in reality.

The first eight figures show how the diffracted pressure

varies as a function of the impedance cover on the illumina ted

sur face .  Spec i f ica l ly,  compa re the Figures  3.2 , 3.4 , 3.6 , and

3.8 where the Brewster angles for the Illuminated surface are

0+ — 300 60
0
, 900 and i~ (pressure release), respectively. It

appears that as this impedance cover on the illuminated surface

varies , there is a significant change in the diffracted pressure.

In contrast , compare these same four figures with Figures 3.10

and 3.12, where the Brewster angle on the unilluminated surface is

varied from the extremes of • 900 for a totally absorbing

surface to ~+ — Si , for a pressure release surface. Wha t becomes

.5-- —— — —-.-- — —-5- -.,—-— — -—— — - -  . — --5-- .~~~~~~— —----- — - — —. - —5-— -—~~ —--5— -
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evident from this comparison is that the impedance of the sur face

lying in the shadow region has little effect on the diffracted

pressu re while tri e impedance cover on the illuminated surface has

a s i gn i f i c ant e f f e c t , bei ng most apparent in the illuminated region.

One concludes that the impedance cover of the illuminated surface

domi nates the d i f f r a c t e d  pressure in the illuminated region. Althoug h

the surface condition on the opposite side may influence the diffracted

p r essure , it Is to a much smal ler degree.

Figures 3.13 and 3.14 are interesting in contrast to Figures

3.1 and 3.2. The impedance cover of the half—plane in Figures 3.13

and 3.14 is almost equivalent to that in Figures 3.1 and 3.2 except

for a small imaginary (reactive) component added to the impedance on

the upper surface. This small imaginary part seems to have little

effect on the near—field solution. However, in the far—field , where

a true null is shown in Figure 3.2, only a minimum is shown at approx-

imately the same angle in Figure 3-14. It is evident , then, that

nulls exist in the far—field solution only when the impedance is

real , i.e., absorptive. In addition , if the impedance is complex,

with a small imaginary part, the null becomes a minimum at approx-

imately the same location. Also, increasing the imaginary part

further may remove the minimum altogether .

The plots of the backscattered pressure further establish the

conclusion that the effect of the impedance on the illuminated

surtace dominates the backscattered pressure in the half—space that

faces the illuminated surface. Compare Figures 3.16, 3.18, 3.20,

- - ~~~~ ~~~~~~~~~~~~~~~~~~~~~~ — _.. . — - - - -~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ • 
- a — -  — -- --
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and 3.22. In each , the lower surface is rigid while the Brewster

ang les f o r  the upper surface are O~ = 300 600, 9Q
0 and iS , respec-

tively. Recall that for backscattered pressure , the source and

observer are at the same location. Then , the backscattered pressure

In the lower half—p lane appears to be the same for all of the

Brewster angles 0
+ 

since the illuminated lower surface is always

rigid. ‘ihe backscattered pressure remains the same in the lower

half—plane regardless of wha t happens on the  upper su r f ace .  In

c o n t r a s t , however , when the source and the receiver are in the upper

halt—plane the backscattered pressure from the different plots

changes corresponding to each d i f f e r e n t  impedance conditions . The

i m p l i c a t i o n  is that  the impedance condi t ion  on the illu4 inated

surface has the dominant influence on the  behavior of the back—

scattered pressure-

A comparison of the plots for both the line source and the

point source to those for the plane wave inc idence demonstrates a

similar  dependence on the impedance cover.

4.4 Summary and Conclusions

The problem of d i f f r a c t i o n  and backsca tt e ring  of var ious  types

of sources was attempted by means of a so—called dual integral

f o r m u l a t i o n .  The dual integral formulation resulted in a new and

closed form solution for the diffraction of various acoustic sources

by an impedance covered half—plane. The closed form solution illus-

trates that the diffraction is a phenomenon manifested by Wave

interference.

— -—--— - — --.--— -—,- a — -. - -. ~~~~~~~~ -- — — - — — — -~~~~~ .-- ~~— - —.- - —.5 —. - - ---: - - - —-
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~[ an exhaustive number of numerical results compiled for many

parameter combinations , only a portion are presented in this thesis.

They demonstrate that the effect of the surface impedance dominates

in the illuminated half—space into which it faces, even though the

influence of each surface extends with diminishing effect into the

opposite half—space behind the barrier .

At the geometric shadow boundary, the diffracted pressure becomes

one—half the incident pressure, while at the reflection shadow

boundary , the diffracted pressure is equal to one—half the reflected

pressure from an impedance covered infinite surface.

The results also indicate that , although the near—field solution

approaches the far—field solution as kr becomes large, it never

equals the far—field solution. Both the source and observer must be

at an Infinite distance from the edge to allow the precise phase

cancellations necessary to yield the far—field solution .

~
-j 
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